Cienciaes.com

Hablando con científicos podcast - cienciaes.com suscripción

Hablando con Científicos

El conocimiento científico crece gracias a la labor de miles de personas que se esfuerzan, hasta el agotamiento, por encontrar respuestas a los enigmas que plantea la Naturaleza. En cada programa un científico conversa con Ángel Rodríguez Lozano y abre para nosotros las puertas de un campo del conocimiento.

El latido del núcleo estelar. Hablamos con Antonio Claret.

El latido del núcleo estelar - Hablando con Científicos podcast - CienciaEs.com

¿Puede haber empresa más osada que viajar al núcleo de una estrella? ¿Quién podría soportar temperaturas capaces de desnudar los átomos de sus electrones, presiones que le dejarían reducido al volumen de un azucarillo y fuerzas de marea que lo convertirían en un mísero espagueti cósmico? A pesar de todos esos inconvenientes, hay personas que lo hacen ¡cada día! Son investigadores que, sin moverse de casa, viajan miles, incluso millones de años luz para sumergirse, sin miedo, en el interior de estrellas mucho más grandes y masivas que la nuestra. Estos imaginativos trotamundos se dividen en dos categorías fundamentales. A una de ellas pertenece nuestro invitado, Antonio Claret, quien sólo necesita la ayuda de un lápiz, un ordenador y las complejas ecuaciones modeladas por las leyes físicas que gobiernan el Universo y, por ende, el interior de las estrellas. Otros, como Guillermo Torres, lo hacen de otra forma: observando y exprimiendo hasta sus más íntimos detalles, la información codificada en la tenue luz que nos llega de las estrellas.

Hoy volvemos a charlar con Antonio Claret, Investigador del IAA y colaborador de CienciaEs, porque, gracias a sus cálculos y las observaciones de Guillermo Torres del Harvard-Smithsonian Center for Astrophysics, en Cambridge, Estados Unidos, conocemos con más fiabilidad lo que sucede en el núcleo de estrellas más grandes y masivas que el Sol.

Las estrellas son enormes hornos nucleares donde se sintetizan distintos núcleos atómicos a partir de hidrógeno y helio. A medida que los núcleos de hidrógeno (protones), que es el principal combustible nuclear, se fusionan para dar núcleos de helio, la reserva de combustible inicial se va consumiendo. La cantidad de masa que acumulan las estrellas durante su formación y la composición química de los elementos nuevos que van creando marcan de una forma dramática el ritmo de consumo consumen su combustible y, por lo tanto, la vida futura de la estrella. Así se producen enormes diferencias: Una estrella con una masa como la del Sol puede tener una vida de 10.000 millones de años, mientras que una estrella más masiva consume tan rápidamente el combustible nuclear que vive apenas unos centenares de millones de años. Una estrella así vive intensamente, dilapida su energía, tiene una vida corta y termina de forma espectacular, en forma de supernova.

Pero las cosas no son tan simples, como podéis imaginar. El corazón de una estrella es un lugar donde se produce una cantidad gigantesca de energía que, lejos de acumularse, lucha por salir. En las estrellas de menor masa, inferiores a 1.3 veces la masa del Sol aproximadamente, la energía se transmite al exterior por radiación. En cambio, en las estrellas de mayor masa, el horno nuclear adquiere mayor temperatura y se producen movimientos del material debido a corrientes convectivas que tienden a mezclarlo. Este núcleo convectivo tiene un límite a partir del cual los movimientos cesan y la energía se transmite por radiación. El tamaño de ese núcleo y los fenómenos que suceden en la frontera del mismo, donde se puede producir un efecto de rebosamiento que contribuye a la mezcla de combustible más allá del límite, son determinantes a la hora de calcular la vida de una estrella.

En el estudio que hoy comenta Antonio Claret se han comparado los resultados de los cálculos teóricos con lo observado en una muestra de 29 estrellas binarias eclipsantes en las que el cálculo de masa y propiedades de las estrellas están bien determinadas. Los resultados, obtenidos utilizando distintos escenarios, revelan que el modelo teórico se comporta de acuerdo con las observaciones y por lo tanto se puede convertir en una herramienta de vital importancia para investigaciones futuras sobre poblaciones estelares, formación de enanas blancas, estrellas de neutrones, agujeros negros y, en general, para el conocimiento de nuestro Universo.

Os invito a escuchar a Antonio Claret.

Referencias:

Antonio Claret y Gullermo Torres. The Dependence of Convective Core Overshooting on Stellar Mass: A Semi-empirical Determination Using the Diffusive Approach with Two Different Element Mixture. The Astrophysical Journal, 849:18 (12pp), 2017 November 1. https://doi.org/10.3847/1538-4357/aa8770

A. Claret. Does convective core overshooting depend on stellar mass?. Tests using double-lined eclipsing binaries. Astronomy and Astrophysics, Volume 475, pp. 1019C, 2007

A. Claret & G. Torres. The dependence of convective core overshooting on stellar mass. Astronomy and Astrophysics, Volume 592A, p. 15 C, 2016


Botón de donación
Hace 11 años que levantamos el vuelo y queremos seguir volando. Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
32,9 millones de audios servidos desde 2009

Agradecemos la donación de:

Anónimo
“Espero que de algo sirva en estos tiempos tan crueles y tan mal manejados por nosotros como especie. Un abrazo, Ángel. “
Mecenas

Azucena Cabiscol
Mecenas

Anónimo
“Con la esperanza de que nuestro transcurrir por la pandemia sea lo menos grave posible, reciban un abrazo desde México. Gracias por acompañarnos en este encierro.”
Mecenas

Vicente Miguel
Mecenas

Sergio Requena
“Por muchos más podcasts!!!”
Mecenas

Jesús López Tapia
“Querido Ángel, me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas

Daniel Pérez Alonso
Mecenas

Carlos Ballesteros
Mecenas

Juan Cuadro Espada
Mecenas

Alejandro Acosta Espinoza
Mecenas

Rosa María Desmarais
Mecenas

Celestino Montoza Jarque
Mecenas

Humberto On
Mecenas

Jorge Ordoñez
Mecenas

César Higuero
Mecenas

Juan Moreno González
Mecenas

Alberto Hernando Martínez
“Me quedo en casa escuchando CienciaEs”
Mecenas

Timoteo Jesús Colomino Ceprian
“Apoyo a la Ciencia”
Mecenas

Daniel César Román Saez
Mecenas

César García Martín
Mecenas

Luis Miguel García Vázquez
Mecenas

Laura Amalia Ibáñez Tojo
“Mil gracias por todos estos años de disfrute que nos estáis dando. Mi hijo de 4 años adora a Ulises y todas las noches escuchamos juntos un podcast.”
Mecenas

Juan Valencia
Mecenas

Jacobo Castilla Vázquez
Mecenas

Carlos Serrano
“Les felicito por su excelente trabajo.”
Mecenas

Estudios Económicos Estratégicos
Mecenas

Jose Carlos Enriquez Dirube
Mecenas

José Manuel Carmona Mendieta
Mecenas

Luis Rico Pernas
Mecenas

Rubén Fernández Sotelo
Mecenas

César García Martín
Mecenas

Alvaro Vallejo
“Muchísimas gracias desde Colombia por ese tesoro de audios. ¡Recién hoy los descubrí!!!”
Mecenas

José Luis Méndez
Mecenas

Ana Rodríguez
Mecenas

Víctor Seva López
Mecenas

Anónimo
“Quisiera poder enumerar a cada uno de los colaboradores de cienciaes. com pero algo me fallaría. Gracias a todos por su esfuerzo. No tengo ninguna otra manera de manifestarlo que tratando de aportar algo para que no cejen. ¡Gracias, admirados divulgadores!”
Mecenas

Rafael Sirera Pérez
“Hacéis un gran trabajo, os felicito y os lo agradezco mucho. Valga mi humilde contribución a vuestra iniciativa”
Mecenas

Santiago Botana Villoldo
“¡Saludos a la Nemoptera! impresionado me hallo por ese capítulo.”
Mecenas

David Tejadas
Mecenas

José Manuel Cardona Mendieta
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page