Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

Obreras “Transformers”

Obreras “Transformers” - Podcast Quilo de Ciencia - CienciaEs.com

Todo misterio elucidado implica progreso para la Humanidad

El universo mantiene aún numerosos misterios que la ciencia se esfuerza en desvelar, pero los misterios no son menores en el ámbito de la vida en la Tierra. Normalmente, estos misterios permanecen inexplorados a menos que su elucidación permita obtener un mejor tratamiento para alguna enfermedad. Sin embargo, de vez en cuando, se produce algún avance que, aunque no permite curar nada, es igualmente importante, porque todo misterio elucidado implica progreso para la Humanidad.

Seguramente, estamos familiarizados con el hecho de que las distintas células de nuestros cuerpos poseen el mismo genoma, es decir, el mismo conjunto de genes y, por consiguiente, la misma información genética. A pesar de esto, contamos con cientos de células diferentes que ejercen, de manera obediente y coordinada, diferentes funciones. Unas sirven para digerir los alimentos; otras, para generar los huesos; otras, para transportar oxígeno; otras, para moverse…e incluso algunos poseen otras, pocas, que les permiten pensar.

La diversidad de fenotipos celulares (clases de células) deriva del mismo genotipo (información genética). Esto es posible gracias a que a partir de esa misma información genética se seleccionan subconjuntos de genes con la información estrictamente necesaria para generar cada uno de los tipos celulares propios de los organismos pluricelulares. Estos subconjuntos de genes se van poniendo en marcha y apagándose a medida que de una célula madre se van derivando las células hijas.

La diferencia de fenotipos generados a partir del mismo genotipo no es solo propia de las células, y puede observarse también en algunos animales, en particular en los insectos. Estamos familiarizados con el hecho de que orugas y mariposas provienen de especies de los mismos insectos en diferentes etapas de sus ciclos vitales. Igualmente, las reinas de abejas y hormigas, las únicas capaces de poner huevos y reproducirse, poseen el mismo genoma que las obreras, que no pueden hacerlo.

Cómo se produce esta plasticidad de fenotipos en las especies de insectos sociales, y también cómo la evolución las ha llegado a seleccionar, ha sido objeto de estudio por la ciencia. Se ha investigado mucho sobre el genoma de la abeja productora de miel, tal vez por el evidente interés económico de esta especie, y también sobre los genomas de algunas especies de hormigas. Lo que se ha descubierto, brevemente, es que reinas y obreras no poseen el mismo conjunto de genes funcionando.

La manera en que reinas y obreras seleccionan los genes que las hacen posibles es mediante la puesta en marcha o detención del funcionamiento de determinados de ellos que les capacitan para realizar las funciones que les son propias. Sin embargo, una vez seleccionados estos genes, las reinas y las obreras tienen su destino fijado. En esto son idénticas a nuestras células. Una neurona o una célula del hígado no pueden normalmente convertirse en otra célula diferente. Una reina no podrá convertirse en obrera, ni una obrera convertirse en reina.

Reinas sustitutas

Sorprendentemente, esto no es siempre así en todas las especies de insectos himenópteros (el orden de insectos al que pertenecen avispas, abejas y hormigas). Algunas especies de avispas sociales, que viven en sociedades no tan complejas como las de las abejas, cuentan con obreras que pueden convertirse en reinas incluso cuando son adultas. Si la reina muere, una de las obreras puede ocupar el trono vacante y dedicarse a las funciones reproductoras que antes no podía ejercer. El mismo fenómeno sucede en algunas especies de hormigas que también viven en sociedades simples.

Evidentemente, esta metamorfosis hacia la realeza no puede realizarse sin modificaciones en el funcionamiento de los genes, los cuales capacitan la puesta en marcha de, tal vez, órganos atrofiados y de nuevos mecanismos para realizar las funciones necesarias. Cómo se ponen en marcha estos genes y por qué estas especies de avispas y hormigas pueden hacerlo y otras, no, era un misterio que un nutridísimo grupo de investigadores de varios países europeos, incluido España, consideraron que merecía la pena investigar.

Utilizando las nuevas tecnologías de la biología y genética moleculares, los investigadores secuencian el genoma completo de una especie de avispa y otra de hormiga que son capaces de transformarse de obreras en reinas. Además, analizan el patrón de modificación química (epigenética) de los genomas de reinas y obreras, así como el nivel de funcionamiento de los llamados micro ARNs, que son pequeños fragmentos de ARN que regulan el funcionamiento de muchos genes.

En el caso de las reinas y obreras de hormigas y abejas tradicionales, era conocido que las modificaciones químicas en el ADN, la epigenética que afecta al funcionamiento de los genes, es un mecanismo importante para seleccionar qué genes funcionan en las reinas y cuáles en las obreras y dejarlos encendidos o apagados permanentemente. En el caso de las avispas y hormigas cuyas obreras pueden transformarse en reinas, esto no sucede. Tampoco parece que los micro ARNs desempeñen un papel preponderante en esta capacidad.

Lo que los investigadores encuentran es que existe un conjunto de genes, una especie de “caja de herramientas” genética, que se ponen en marcha juntos cuando es necesario que una obrera se transforme en reina, pero el mecanismo preciso de este funcionamiento no ha podido ser aún revelado. Este nuevo conocimiento indica que existen nuevos procesos aún por desvelar en el control del funcionamiento génico que son responsables de las asombrosas transformaciones de fenotipo que los insectos pueden efectuar. Su comprensión tal vez tenga repercusiones insospechadas para otros aspectos de la biología, o incluso de la medicina.

Referencia: Solenn Patalano et al. (2015). Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies www.pnas.org/cgi/doi/10.1073/pnas.1515937112

Obras de divulgación de Jorge Laborda

Quilo de Ciencia Volumen I. Jorge Laborda
Quilo de Ciencia Volumen II. Jorge Laborda
Quilo de Ciencia Volumen III. Jorge Laborda
Quilo de Ciencia Volumen IV. Jorge Laborda
Quilo de Ciencia Volumen V. Jorge Laborda
Quilo de Ciencia Volumen VI. Jorge Laborda
Quilo de Ciencia Volumen VII. Jorge Laborda

Circunstancias encadenadas. Ed. Lulu

Circunstancias encadenadas. Amazon

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo

One Moon one civilization why the Moon tells us we are alone in the universe

Adenio Fidelio

El embudo de la inteligencia y otros ensayos


Botón de donación
Hace 11 años que levantamos el vuelo y queremos seguir volando. Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
32,9 millones de audios servidos desde 2009

Agradecemos la donación de:

Anónimo
“Espero que de algo sirva en estos tiempos tan crueles y tan mal manejados por nosotros como especie. Un abrazo, Ángel. “
Mecenas

Azucena Cabiscol
Mecenas

Anónimo
“Con la esperanza de que nuestro transcurrir por la pandemia sea lo menos grave posible, reciban un abrazo desde México. Gracias por acompañarnos en este encierro.”
Mecenas

Vicente Miguel
Mecenas

Sergio Requena
“Por muchos más podcasts!!!”
Mecenas

Jesús López Tapia
“Querido Ángel, me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas

Daniel Pérez Alonso
Mecenas

Carlos Ballesteros
Mecenas

Juan Cuadro Espada
Mecenas

Alejandro Acosta Espinoza
Mecenas

Rosa María Desmarais
Mecenas

Celestino Montoza Jarque
Mecenas

Humberto On
Mecenas

Jorge Ordoñez
Mecenas

César Higuero
Mecenas

Juan Moreno González
Mecenas

Alberto Hernando Martínez
“Me quedo en casa escuchando CienciaEs”
Mecenas

Timoteo Jesús Colomino Ceprian
“Apoyo a la Ciencia”
Mecenas

Daniel César Román Saez
Mecenas

César García Martín
Mecenas

Luis Miguel García Vázquez
Mecenas

Laura Amalia Ibáñez Tojo
“Mil gracias por todos estos años de disfrute que nos estáis dando. Mi hijo de 4 años adora a Ulises y todas las noches escuchamos juntos un podcast.”
Mecenas

Juan Valencia
Mecenas

Jacobo Castilla Vázquez
Mecenas

Carlos Serrano
“Les felicito por su excelente trabajo.”
Mecenas

Estudios Económicos Estratégicos
Mecenas

Jose Carlos Enriquez Dirube
Mecenas

José Manuel Carmona Mendieta
Mecenas

Luis Rico Pernas
Mecenas

Rubén Fernández Sotelo
Mecenas

César García Martín
Mecenas

Alvaro Vallejo
“Muchísimas gracias desde Colombia por ese tesoro de audios. ¡Recién hoy los descubrí!!!”
Mecenas

José Luis Méndez
Mecenas

Ana Rodríguez
Mecenas

Víctor Seva López
Mecenas

Anónimo
“Quisiera poder enumerar a cada uno de los colaboradores de cienciaes. com pero algo me fallaría. Gracias a todos por su esfuerzo. No tengo ninguna otra manera de manifestarlo que tratando de aportar algo para que no cejen. ¡Gracias, admirados divulgadores!”
Mecenas

Rafael Sirera Pérez
“Hacéis un gran trabajo, os felicito y os lo agradezco mucho. Valga mi humilde contribución a vuestra iniciativa”
Mecenas

Santiago Botana Villoldo
“¡Saludos a la Nemoptera! impresionado me hallo por ese capítulo.”
Mecenas

David Tejadas
Mecenas

José Manuel Cardona Mendieta
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page