El neutrino es una partícula esquiva, en apariencia insignificante, pero necesaria para explicar el mundo. Ni la radiactividad, ni el big bang, ni el Modelo Estandar de la física de partículas serían posibles sin él. Con El neutrino, un blog nacido en febrero de 2009, el físico y escritor Germán Fernández pretende acercar al lector, y ahora al oyente, al mundo de la ciencia a partir de cualquier pretexto, desde un paseo por el campo o una escena de una película, hasta una noticia o el aniversario de un investigador hace tiempo olvidado.
Que el comportamiento de un fluido depende del tamaño ya lo podemos intuir cuando vemos películas en las que se han filmado escenas de barcos con maquetas a escala reducida: Ni el movimiento de los barcos ni la propia agua parecen reales.
Los físicos caracterizan el movimiento de los fluidos mediante un parámetro llamado número de Reynolds, que describe la importancia relativa de las fuerzas inerciales frente a las fuerzas viscosas en el fluido; cuanto mayor es ese número, mayor es el efecto de las primeras y menor el de las segundas. Las fuerzas inerciales son las que hacen que un nadador siga avanzando aunque deje de mover brazos y piernas, mientras que las fuerzas viscosas son las que oponen resistencia a ese movimiento y acaban por detenerlo.
El número de Reynolds depende de la densidad y viscosidad del fluido, pero también de su velocidad y del tamaño del objeto que se mueve en él (o del grosor de la tubería por la que fluye). Así, el número de Reynolds de un nadador humano es de unos 10 millones, mientras que el de una bacteria es de 0,00001. En el primer caso, las fuerzas dominantes son las de inercia, mientras que en el segundo es todo lo contrario. Un nadador, o una embarcación, siguen moviéndose durante un tiempo aunque dejen de propulsarse, mientras que una bacteria en el mismo caso se detiene inmediatamente. En términos prácticos, el agua opone más resistencia al movimiento cuanto menor es el tamaño y la velocidad del objeto que se mueve en ella.
El estudio de los líquidos a escala microscópica tiene multitud de aplicaciones prácticas, desde la medicina hasta la nanotecnología. Pero resulta más fácil realizar los experimentos con maquetas de nuestro tamaño. Para que esas maquetas se comporten como objetos microscópicos es preciso reducir su número de Reynolds, lo que se logra sustituyendo el agua por un líquido más viscoso; tan viscoso, de hecho, como la miel. Así deberían experimentar el agua los miniaturizados protagonistas de las películas que citábamos; les resultaría enormemente difícil nadar e incluso beber.
Otra consecuencia del aumento de las fuerzas viscosas a pequeña escala es el llamado teorema de la vieira. La vieira, ese exquisito molusco, se desplaza cerrando violentamente sus valvas, con lo que el chorro de agua que expulsa propulsa su cuerpo hacia atrás. El teorema de la vieira afirma que un movimiento de vaivén como ése sólo es eficaz cuando el número de Reynolds es alto. A bajo número de Reynolds, cuando las fuerzas viscosas dominan a las inerciales, la apertura de las valvas generaría el mismo impulso que su cierre, pero en sentido contrario; el desplazamiento neto de la vieira sería nulo. A un nadador humano le ocurriría lo mismo con el movimiento de vaivén de las piernas en el estilo libre; a escala normal genera alrededor de la quinta parte del impulso total, pero a escala reducida, en un líquido tan viscoso como la miel, no produciría ningún impulso. Más dificultades para nuestros protagonistas.
Pero, pensándolo bien, el error es disculpable, ya que si llevamos la física hasta sus últimas consecuencias, los personajes tendrían incluso dificultades para respirar, ya que el aire también es un fluido. Y si los personajes no pueden respirar, nos quedamos sin película.
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
40,8 millones de audios servidos desde 2009
Agradecemos la donación de:
Angel Quelle Russo
“Vuestra labor de divulgación de la ciencia y en particular del apoyo a los científicos españoles me parece muy necesario e importante. Enhorabuena.”
Angel Rodríguez Díaz
“Seguid así”
Anónimo
Mauro Mas Pujo
Maria Tuixen Benet
“Nos encanta Hablando con Científicos y el Zoo de Fósiles. Gracias.”
Daniel Dominguez Morales
“Muchas gracias por su dedicación.”
Anónimo
Jorge Andres-Martin
Daniel Cesar Roman
“Mecenas”
José Manuel Illescas Villa
“Gracias por vuestra gran labor”
Ulrich Menzefrike
“Donación porque me gustan sus podcasts”
Francisco Ramos
Emilio Rubio Rigo
Vicente Manuel CerezaClemente
“Linfocito Tcd8”
Enrique González González
“Gracias por vuestro trabajo.”
Andreu Salva Pages
Emilio Pérez Mayuet
“Muchas gracias por vuestro trabajo”
Daniel Navarro Pons
“Por estos programas tan intersantes”
Luis Sánchez Marín
Jesús Royo Arpón
“Soy de letras, sigo reciclándome”