Cienciaes.com

El Neutrino podcast - Cienciaes.com suscripción

El Neutrino

El neutrino es una partícula esquiva, en apariencia insignificante, pero necesaria para explicar el mundo. Ni la radiactividad, ni el big bang, ni el Modelo Estandar de la física de partículas serían posibles sin él. Con El neutrino, un blog nacido en febrero de 2009, el físico y escritor Germán Fernández pretende acercar al lector, y ahora al oyente, al mundo de la ciencia a partir de cualquier pretexto, desde un paseo por el campo o una escena de una película, hasta una noticia o el aniversario de un investigador hace tiempo olvidado.

Ménage à trois sideral: los puntos de Lagrange

Puntos de Lagrange - El Neutrino - cienciaes.com

Cuando pensamos en órbitas, imaginamos un cuerpo celeste describiendo un círculo o una elipse alrededor de otro. Ésta es la situación más simple, pero no es la única posible, ni mucho menos. Afortunadamente, en nuestro Sistema Solar los planetas están muy separados entre sí, y sus masas son muchísimo menores que la del Sol; por eso se mueven en órbitas elípticas alrededor de éste, y las perturbaciones que ejercen unos sobre otros son muy pequeñas. Y digo afortunadamente porque de esta manera las órbitas son muy estables. A efectos prácticos, se puede calcular el movimiento de cada planeta con bastante precisión considerando únicamente la atracción gravitatoria del Sol. Este problema es resoluble, y sus soluciones son las sencillas órbitas elípticas.

Pero en general, cuando hay más de dos cuerpos involucrados, el problema no se puede resolver analíticamente, y hay que recurrir a aproximaciones o a cálculos numéricos. Ni siquiera el llamado problema de los tres cuerpos, el que plantea el estudio del movimiento de tres cuerpos de cualquier masa sometidos a su atracción gravitatoria mutua, tiene una solución general que pueda expresarse con fórmulas matemáticas. Sí que la tiene un caso particular del problema de los tres cuerpos, el llamado problema de los tres cuerpos restringido circular, en el que se postula que la masa de uno de los cuerpos es despreciable respecto a la de los otros dos, y que éstos últimos tienen órbitas circulares: éste es el ca¬so, por ejemplo, del sistema formado por la Tierra y la Luna y una nave espacial que se mueve entre ellas.

El problema de los tres cuerpos restringido circular tiene cinco soluciones estacionarias, cinco puntos en los que un objeto pequeño permanece en equilibrio estacionario respecto de los otros dos; son los llamados puntos de Lagrange o puntos de libración. El objeto, visto desde los dos cuerpos grandes, parece inmóvil en el cielo. Estos puntos de Lagrange se identifican con la letra L seguida de un número, desde 1 hasta 5.

(Más información… )


Botón de donación
Colabora al mantenimiento de CienciaEs con una donación puntual o haciéndote “patrocinador” con una donación periódica.
Colabore con CienciaEs.com - Ciencia para Escuchar
26.584.752 audios servidos.

Agradecemos la donación de:

Lauren Gillespie
“Nuevo colaborador periódico (Paypal)”

Angel Manuel Martín Badajoz

Antonio Lalaguna “Hago esta donaciónen nombre de mi hijo Martín L”

José Rapun
(Madrid)

Sergio Rodríguez González
“Otra ayudina”

Francisca Matesanz Ballesteros
(Madrid)

Joe Szakmary

Morpheus Aiolos S.L.
“En Afterbanks este mes os hemos escuchado mucho. Gracias por hacernos las tardes entretenidas.”

Fco. Javier Jiménez Iturbide
“Gracias por vuestra labor.”
(Rivas Vaciamadrid, Madrid)

Anónimo
Patrocinador
(México)

Josué Raúl García Soria Mondragón

Miguel Ares Merelas
Nuevo Patrocinador

Arturo Martínez Martín
“Gracias por vuestro trabajo y dedicación.”

Ramón Baltasar de Bernardo

Jose A Márquez
“¿Ciencia fresca?… Sigan adelante.”

José Félix Torre Santos
“Nuevo colaborador periódico (Paypal)”

Jose Pascual Gimeno Marí
“Colaborador periódico (Paypal)”

Diego Isaac Rivera
Patrocinador

Sergio Requena
“Muchas gracias por saciar las mentes de miles de personas con ansias de saber. Lo que no han sabido hacer los profesores en las aulas, vosotros lo estáis consiguiendo con mucha arte además.”

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page