Cienciaes.com

El Neutrino podcast - Cienciaes.com suscripción

El Neutrino

El neutrino es una partícula esquiva, en apariencia insignificante, pero necesaria para explicar el mundo. Ni la radiactividad, ni el big bang, ni el Modelo Estandar de la física de partículas serían posibles sin él. Con El neutrino, un blog nacido en febrero de 2009, el físico y escritor Germán Fernández pretende acercar al lector, y ahora al oyente, al mundo de la ciencia a partir de cualquier pretexto, desde un paseo por el campo o una escena de una película, hasta una noticia o el aniversario de un investigador hace tiempo olvidado.

El tamaño importa... para nadar

El tamaño importa - CienciaEs.com - El Neutrino podcst
Uno de los temas recurrentes del cine de ciencia ficción es la miniaturización de seres humanos, desde los clásicos El increíble hombre menguante y Viaje alucinante hasta las más recientes Cariño, he encogido a los niños y Arthur y los minimoys. La gran mayoría de estas películas, por no decir todas, caen en el mismo error: Los protagonistas beben o nadan con normalidad, cuando en realidad tendrían muchas dificultades para hacer esas cosas con su tamaño reducido, porque el comportamiento de los fluidos cambia con la escala.

Que el comportamiento de un fluido depende del tamaño ya lo podemos intuir cuando vemos películas en las que se han filmado escenas de barcos con maquetas a escala reducida: Ni el movimiento de los barcos ni la propia agua parecen reales.

Los físicos caracterizan el movimiento de los fluidos mediante un parámetro llamado número de Reynolds, que describe la importancia relativa de las fuerzas inerciales frente a las fuerzas viscosas en el fluido; cuanto mayor es ese número, mayor es el efecto de las primeras y menor el de las segundas. Las fuerzas inerciales son las que hacen que un nadador siga avanzando aunque deje de mover brazos y piernas, mientras que las fuerzas viscosas son las que oponen resistencia a ese movimiento y acaban por detenerlo.

El número de Reynolds depende de la densidad y viscosidad del fluido, pero también de su velocidad y del tamaño del objeto que se mueve en él (o del grosor de la tubería por la que fluye). Así, el número de Reynolds de un nadador humano es de unos 10 millones, mientras que el de una bacteria es de 0,00001. En el primer caso, las fuerzas dominantes son las de inercia, mientras que en el segundo es todo lo contrario. Un nadador, o una embarcación, siguen moviéndose durante un tiempo aunque dejen de propulsarse, mientras que una bacteria en el mismo caso se detiene inmediatamente. En términos prácticos, el agua opone más resistencia al movimiento cuanto menor es el tamaño y la velocidad del objeto que se mueve en ella.

El estudio de los líquidos a escala microscópica tiene multitud de aplicaciones prácticas, desde la medicina hasta la nanotecnología. Pero resulta más fácil realizar los experimentos con maquetas de nuestro tamaño. Para que esas maquetas se comporten como objetos microscópicos es preciso reducir su número de Reynolds, lo que se logra sustituyendo el agua por un líquido más viscoso; tan viscoso, de hecho, como la miel. Así deberían experimentar el agua los miniaturizados protagonistas de las películas que citábamos; les resultaría enormemente difícil nadar e incluso beber.

Otra consecuencia del aumento de las fuerzas viscosas a pequeña escala es el llamado teorema de la vieira. La vieira, ese exquisito molusco, se desplaza cerrando violentamente sus valvas, con lo que el chorro de agua que expulsa propulsa su cuerpo hacia atrás. El teorema de la vieira afirma que un movimiento de vaivén como ése sólo es eficaz cuando el número de Reynolds es alto. A bajo número de Reynolds, cuando las fuerzas viscosas dominan a las inerciales, la apertura de las valvas generaría el mismo impulso que su cierre, pero en sentido contrario; el desplazamiento neto de la vieira sería nulo. A un nadador humano le ocurriría lo mismo con el movimiento de vaivén de las piernas en el estilo libre; a escala normal genera alrededor de la quinta parte del impulso total, pero a escala reducida, en un líquido tan viscoso como la miel, no produciría ningún impulso. Más dificultades para nuestros protagonistas.

Pero, pensándolo bien, el error es disculpable, ya que si llevamos la física hasta sus últimas consecuencias, los personajes tendrían incluso dificultades para respirar, ya que el aire también es un fluido. Y si los personajes no pueden respirar, nos quedamos sin película.

Colabore con CienciaEs.com - Ciencia para Escuchar
Desde que levantamos el vuelo, en 2009,
hemos servido 22.577.533 audios.
Gracias a tu donación podemos continuar.

Botón de donación

Agradecemos la donación de:

Gerardo Ferradás Ave
(Bueu, Pontevedra)

Maria Inmaculada Pons Chirivella

Martin Nagy
“Recuerdo de Martin desde Eslovaquia”

José Barba Meinecke
“Apoyo para continuar con la difusión de la ciencia.”
(Tijuana, México)

Joaquín García López
““Colaborador a través de Patreon/CienciaEs”“

Carmen Escalada
““Colaboradora a través de Patreon/CienciaEs”“

Vicent Pelechano
““Colaborador a través de Patreon/CienciaEs”“

Julia Dolores Martinez Vilela
““Ciencia para Escuchar”“

José Marzo García
“Sostenimiento de Cienciaes.com”
(Valencia)

Juan Cuerda Villanueva
“Ciencia para Escuchar”

Ramón Baltasar de Bernardo Hernán

Rubén de Iscar Camacho
““Colaborador a través de Patreon/CienciaEs”“

José Luis Montalbán Recio
(Paracuellos del Jarama, Madrid)

Jesús Rodríguez Onteniente
“Para que hagáis un podcast hablando de los “foraminiferos”“
(Guardamar del segura, Alicante)

Xpas Pas
““Colaborador a través de Patreon/CienciaEs”“

Fernando Arribas Uguet

Juan Botías Agea
““Colaborador a través de Patreon/CienciaEs”“

Agustín Fernández Abril
(Boisan, León)

Emilio Rubio
“Colaborador a través de Patreon

Anónimo
(México)

David Casquero
“Seguir divulgando la ciencia a toda la sociedad”
(Gamiz-Fika, Vizcaya)

César Ernesto Anzalone G.
“Espero que este humilde aporte sea de útilidad en la noble misión que se han propuesto, como la divulgación científica.”
(Nuevo León, México)

Antonio Lalaguna Lisa
“Hago esta donaciónen nombre de mi hijo Martín L”

José María Gil Montano

Araq
“Colaborador a través de Patreon/CienciaEs

Kambiz Deyhimi Chaman Jooy Ghahvehc
GRACIAS POR VUESTRO TRABAJO

Mario Brambilla Rueda

Francisco Javier Carrillo
“Colaborador a través de Patreon

Guianeya Guerra
“Colaborador a través de Patreon

Abraham Bernal Miranda
“Colaborador a través de Patreon

Luis Fernando García Álvarez
“Colaborador a través de Patreon

Rafael López Fernández
“Un año más, muchas gracias y buena ciencia a tdo@s”
(Tres Cantos, Madrid)

Alfredo De La Riva Ruiz
(Naucalpan, México)

Leon Torres
“Espero que con la nueva plataforma Patreon y oyentes ávidos de nuevos podcasts puedan obtener el soporte que necesitan ¡Hasta el próximo podcast! ¡Y buena ciencia a todos!”
(Buenos Aires, Argentina)

Ayoze Namekop
“Una gran idea, tenéis mi apoyo. Colaborar a través de Patreon

DeXterRr
“Colabora a través de Patreon

José María Aritzeta Iraola
(Artea, Vizcaya)

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page