Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

Un siglo de Notch

Un siglo de Notch - Podcast Quilo de Ciencia - Cienciaes.com

Este año celebramos el centenario del descubrimiento de un gen que todavía hoy es uno de los más estudiados por la comunidad científica interesada en Biología Molecular y Celular. Se trata del gen Notch, palabra inglesa que en español significa “muesca”.

Corría el año 1914 cuando el estadounidense John S. Dexter, que trabajaba bajo la dirección de gran genetista Thomas Hunt Morgan, observó, entre las moscas de la fruta Drosophila melanogaster que criaba en el laboratorio, la aparición de unos mutantes que presentaban muescas en los bordes de las alas. Sin derrochar mucha imaginación, al gen responsable de la generación de estas muescas le denominaron Notch. Eran los años del despertar de la genética –sí, hace sólo un siglo–, tras el redescubrimiento, a principios de siglo XX, de las leyes de Mendel, base fundamental de esa ciencia.

El grupo de Morgan descubrió igualmente otras variantes de ese gen que generaban diversas moscas mutantes. No obstante, el mutante más importante fue descubierto en los años 30 por Don Poulson, y su descubrimiento condujo a la conclusión, hasta entonces debatida, de que los genes participan en el desarrollo embrionario. El mutante que Poulson estudió carecía por completo del gen Notch, lo que conducía a la generación de un enorme exceso de células nerviosas durante el desarrollo del embrión de la mosca, a expensas de las células epiteliales. Los embriones mutantes, carentes de piel, no eran viables y morían antes de nacer.

LÍMITES DE LA GENÉTICA

En los años 50 y 60 del siglo pasado se realizaron análisis genéticos muy sofisticados en el laboratorio de Bill Welshons, quien junto a su mujer dedicó su vida al estudio de este gen. Estos investigadores identificaron la región del cromosoma X de la mosca en la que el gen Notch se localiza y analizaron decenas de reordenamientos cromosómicos que no producían mutantes solo en las alas, sino también en los ojos y en los pelos sensores de la mosca, entre otras partes del cuerpo. Estos estudios desvelaron que el gen Notch estaba implicado en la correcta formación de numerosas estructuras corporales.

Pero la genética clásica había alcanzado sus límites. A pesar de los muy exactos mapas genéticos generados, de conocer con gran precisión en qué lugar del cromosoma X se localizaba el gen Notch, y de conocer que los mutantes afectaban de diversas formas al desarrollo embrionario, nada se sabía aún sobre la naturaleza de este gen. Para averiguarlo, hubo que esperar al progreso de las técnicas de biología molecular y de la secuenciación del ADN. Esto permitió al grupo del científico Artsavanis-Tsakonas clonar y secuenciar el gen Notch de Drosophila en 1983. Poco después, se clonó este gen en el gusano de laboratorio y también en el sapo.
Fue la década de los 90 del pasado siglo la que condujo a identificar que los mamíferos poseen no uno, sino cuatro genes Notch que han aparecido por multiplicación génica durante la evolución desde la mosca hasta el ser humano. El conocimiento molecular del gen Notch permitió averiguar que la proteína que produce es un receptor localizado en la membrana de las células. Los receptores son proteínas especializadas en interaccionar con otras presentes fuera de la célula, como hormonas o factores de crecimiento, y de enviar una señal molecular al núcleo celular, la cual pone en marcha o apaga genes necesarios para que la célula se adapte a las circunstancias cambiantes del entorno.

RECEPTORES Y LIGANDOS

Este conocimiento condujo a investigar qué proteínas podrían ser las que activaran al receptor, las cuales se denominan con el nombre genérico de ligandos, ya que deben ligarse al receptor para activarlo. Se identificaron así dos ligandos en la mosca y cinco ligandos en los mamíferos. Sorprendentemente, los ligandos eran también proteínas de la membrana celular y, por tanto, debían estar presentes en las células vecinas en contacto con aquella que presentaba el receptor en la membrana.

Quedó así demostrado que los receptores Notch y sus ligandos constituyen uno de los más primitivos sistemas de comunicación célula a célula que ha llegado hasta nuestros días. Este sistema permite a las células organizarse y asumir diferentes funciones a lo largo del desarrollo embrionario. Es un sistema de comunicación íntimo, en el que las células deben enviarse señales de cercanía y confianza mutua para colaborar en la construcción de un organismo complejo. Evidentemente, fallos en este sistema de comunicación conducen a patologías importantes en el ser humano, entre las que se encuentran el cáncer, deficiencias inmunológicas, enfermedades cardiovasculares, y problemas del desarrollo embrionario, por supuesto.

A lo largo de mi carrera investigadora, he tenido la fortuna de descubrir dos genes que controlan a la baja la activación de los receptores Notch: los genes Dlk1 y Dlk2. Los efectos y función de estos genes están hoy siendo estudiados por laboratorios de todo el mundo. Es una suerte y un orgullo haber podido contribuir modestamente al desarrollo de un campo de investigación que cuenta ya con un siglo de actividad y que ha conducido a la publicación de miles de artículos científicos en las revistas más prestigiosas.

Sin embargo, queda mucho aún por estudiar para comprender en su totalidad las implicaciones del funcionamiento de los receptores Notch, los cuales participan en prácticamente todos los procesos biológicos en los que es necesario una comunicación intercelular. Este conocimiento puede ser de gran importancia para entender numerosos procesos patológicos e intentar ponerles remedio. Esperemos que no tardemos cien años más en lograr este objetivo.

NUEVA OBRA DE JORGE LABORDA.

Se puede adquirir aquí:

Circunstancias encadenadas. Ed. Lulu

Circunstancias encadenadas. Amazon

Otras obras de Jorge Laborda

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo


Botón de donación
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
40,8 millones de audios servidos desde 2009

Agradecemos la donación de:

Maria Tuixen Benet
“Nos encanta Hablando con Científicos y el Zoo de Fósiles. Gracias.”

Daniel Dominguez Morales
“Muchas gracias por su dedicación.”

Anónimo

Jorge Andres-Martin

Daniel Cesar Roman
“Mecenas”

José Manuel Illescas Villa
“Gracias por vuestra gran labor”

Ulrich Menzefrike
“Donación porque me gustan sus podcasts”

Francisco Ramos

Emilio Rubio Rigo

Vicente Manuel CerezaClemente
“Linfocito Tcd8”

Enrique González González
“Gracias por vuestro trabajo.”

Andreu Salva Pages

Emilio Pérez Mayuet
“Muchas gracias por vuestro trabajo”

Daniel Navarro Pons
“Por estos programas tan intersantes”

Luis Sánchez Marín

Jesús Royo Arpón
“Soy de letras, sigo reciclándome”

Fernando Alejandro Medina Vivanco
“Ayuda”

Anónimo

Fernando Vidal

José V González F
“A nombre de mi hijo León Emiliano hacemos esta pequeña aportación. Escuchar ciencia juntos nos hace muy felices. Gracias.”

Javier Galán Cantero
“Por los grandes programas, gracias”

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page