Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

Bombonas de oxígeno para las células madre

Bombonas de oxígeno para las células madre - Quilo de Ciencia podcast -CienciaEs.com

La generación de nuevos tejidos en el laboratorio a partir de células madre no es tarea fácil
Algunas veces, la ciencia da un salto de gigante y nos ofrece un avance espectacular en algún área del conocimiento o de la tecnología; otras, se estanca y promete el avance en un futuro que siempre se encuentra a la misma distancia del presente, como sucede, de momento, con la fusión nuclear, cuya consecución parece encontrarse a 30 años en el futuro desde hace ya más de 30 años. Otras veces, por último, la ciencia avanza poco a poco, aunque sin pausa, acercándose a un objetivo que podrá tal vez cambiar el futuro de la Humanidad. Un ejemplo de esta última situación nos la ofrece la ingeniería de tejidos.

Esta tecnología biomédica intenta generar en el laboratorio órganos o tejidos que puedan servir para sustituir o reparar los que pueden haberse dañado debido al envejecimiento o a lesiones. Por ejemplo, persigue generar hueso o cartílago para la regeneración de articulaciones deterioradas. Igualmente, persigue la generación de órganos funcionales completos, como el páncreas, el hígado o el corazón.
La generación de estos tejidos y órganos se pretende realizar a partir de células madre aisladas del propio paciente, con lo que se evitaría el problema del rechazo. Las células del nuevo órgano serían identificadas como propias por el sistema inmune del paciente, lo que no sucede en los trasplantes tradicionales, que requieren por ello de un continuado tratamiento inmunosupresor para inducir la tolerancia.

La generación de nuevos tejidos en el laboratorio a partir de células madre no es tarea fácil. Aunque la ciencia ha avanzado mucho en la comprensión de los factores moleculares necesarios para conseguir que las células madre se conviertan en células adultas especializadas del órgano o tejido que deseamos generar, estamos lejos de poder imitar las condiciones de organogénesis que se producen durante el desarrollo embrionario. Estas condiciones garantizan un continuo aporte de nutrientes y oxígeno al órgano en crecimiento, el cual no desarrolla solo las células de la función que le son propias (hepatocitos en el caso del hígado, por ejemplo), sino también células del sistema vascular que lo irrigan de sangre a medida que crece.

La generación artificial de tejidos se ha limitado a inducir el crecimiento y la diferenciación hacia células adultas de células madre que se hacen crecer en medio nutritivo y sobre un soporte poroso que imita la organización tridimensional del tejido que se desea generar. El soporte funciona como un andamio en el que se van colocando los “ladrillos” (células) y elementos estructurales del tejido. Este método resulta relativamente eficaz para la generación de tejidos como la piel, el cartílago o el hueso.

Sin embargo, este procedimiento se ha topado con el importante problema de que las células de la periferia del andamio dificultan seriamente la correcta difusión del oxígeno hacia el interior. Esto impide la generación adecuada de tejido de manera homogénea en todas las regiones del soporte y produce áreas de necrosis (células muertas) o degradación por inadecuada oxigenación de esas partes. Si deseamos conseguir una suficiente difusión del oxígeno, debemos limitarnos a generar solo pequeños trocitos de tejido, los únicos con el tamaño adecuado para que el oxígeno pueda llegar a todas las regiones de los mismos.

Necesitan un respiro

Se han empleado diversas estrategias para intentar mejorar la difusión del oxígeno durante el crecimiento de las células, que incluyen la compresión mecánica o la difusión forzada. Sin embargo, estas técnicas influyen negativamente en la formación de los tejidos. Se ha intentado también generar vasos sanguíneos a la vez que se hace crecer el tejido, pero faltos de un corazón que bombee la sangre, la vascularización no produce los resultados deseados. Mejores resultados se han conseguido utilizando como andamio biomateriales que almacenan oxígeno, como peróxido de calcio, que se descompone poco a poco y libera este gas. No obstante, esto tampoco se ha revelado como la estrategia ideal.

Ahora, investigadores de varias universidades del Reino Unido desarrollan un nuevo método que intenta imitar la capacidad del músculo para almacenar oxígeno. Los músculos esqueléticos de los mamíferos contienen la proteína mioglobina, la cual almacena el oxígeno captado a partir de la hemoglobina de la sangre. Delfines y ballenas poseen músculos particularmente ricos en esta proteína, lo que les permite sumergirse por largos minutos. Esos animales llevan sus particulares “bombonas de oxígeno” en sus propios músculos.

Los investigadores desarrollan un nuevo procedimiento que consigue modificar químicamente la mioglobina sin que por ello pierda sus capacidades de almacenaje de oxígeno. La modificación química logra que la mioglobina, con su carga de oxígeno, se una de manera reversible a las membranas del citoplasma de las células madre. Estas van ahora provistas también de una “bombona de oxígeno” molecular.

Tratando a las células madre con esta mioglobina modificada antes de inducirlas a crecer en el soporte correspondiente, los investigadores son capaces de generar cartílago en el laboratorio y evitar las áreas de necrosis y degeneración que eran propias de esta tecnología. La nueva técnica permite también generar tejidos de dimensiones muy superiores a las que eran posibles hasta ahora.

Aunque todavía no lo han probado, los investigadores creen que este nuevo método permitirá crecer en el laboratorio tejidos u órganos de gran tamaño, como huesos completos o incluso el corazón. Puede que nos encontremos frente a un importante avance.

Referencia: Armstrong et al. (2015). Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue.

http://www.nature.com/ncomms/2015/150617/ncomms8405/full/ncomms8405.html

Obras de divulgación de Jorge Laborda

Quilo de Ciencia Volumen I. Jorge Laborda
Quilo de Ciencia Volumen II. Jorge Laborda
Quilo de Ciencia Volumen III. Jorge Laborda
Quilo de Ciencia Volumen IV. Jorge Laborda
Quilo de Ciencia Volumen V. Jorge Laborda
Quilo de Ciencia Volumen VI. Jorge Laborda
Quilo de Ciencia Volumen VII. Jorge Laborda

Circunstancias encadenadas. Ed. Lulu

Circunstancias encadenadas. Amazon

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo

One Moon one civilization why the Moon tells us we are alone in the universe

Adenio Fidelio

El embudo de la inteligencia y otros ensayos


Botón de donación
Apoya la labor divulgadora de CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
30.567.185 audios servidos.

Agradecemos la donación de:

Eulogio González Moreno
“Me encantan vuestros programas. Intento que mis hijos se aficionen a ellos pero de momento se resisten. . . No me rindo, jajaja”
Mecenas

Jesús Hermosilla Dupuy
Mecenas

Raul Martínez Cristóbal
Mecenas

Abner Castro
Nuevo Mecenas

Francisco Javier Armendáriz Ferre
“Por “Hablando con Científicos” y el resto de personas que hacéis Cienciaes.”
Mecenas

Juan Agustín Esteban Jiménez
Mecenas

Cristian Jaure
Mecenas

Anónimo
“La verdad os hará libres” y en la ciencia encontraremos mucha verdad. ¡Gracias por continuar con el esfuerzo!
Mecenas

Armando González
Nuevo Mecenas

Rubén del Cura
Nuevo Mecenas

Jacob Hughey
“Muchas gracias por los podcasts, sobre todo Ciencia Fresca, que me encantan la conversación y la ausencia de la música ambiental.”
Mecenas

Carlos Serrano
Mecenas

Rosa Lencero
Mecenas

Jesús López
“Me siento muy honrado de pertenecer a esta comunidad, gracias por vuestro trabajo.*
Mecenas

Alejandro Medina Vivanco
Mecenas

James Feng
“Empecé a escuchar tu podcast como un auxilio para mi aprendizaje de la lengua española. Me ha impresionado la calidad de los programas. Keep up the good work!
Mecenas

Enrique Alba Vázquez
“Desde que os descubrí hace unos meses, me duermo y despierto con vosotros. No nos abandonéis.”
Mecenas

Rafael López
Nuevo Mecenas

Diego Pereira de Oliveira
“Gracias por divulgar la ciencia :).”
Mecenas

Jurate Kazlauskaite
“Gracias por divulgar la ciencia :).”
Mecenas

Adolfo Baquiano.
“Estuve un tiempo sin poder escucharos, pero este año.. ¡he vuelto!. Ánimo y mucha suerte.”
Mecenas

RandomUsername-7K
Mecenas

Santiago Querol Verdú
Mecenas

Anónimo
“Divulgad ciencia amigos, divulgad contra viento y marea.”
Mecenas

Daniel Murillo Flores
Mecenas

Anónimo de Granada
Mecenas

Michał Radmacher
Mecenas

J R Theobald
Mecenas

Miguel de la Sierra.
Nuevo Mecenas

Luis Miguel Meso Gómez
Mecenas

Kogyo
Mecenas
(Hiratsuka shi, Japón)

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page