Los mares y océanos han motivado desde siempre a los científicos. La necesidad de orientarse en un entorno cambiante nos ha hecho mirar al cielo y conocer los astros y sus movimientos, hemos creado instrumentos de navegación en los que se dan la mano arte, ciencia y tecnología, y han tenido lugar grandes expediciones científicas que han cambiado la visión del mundo y de nosotros mismos. De todo ello nos habla Manuel Díez Minguito.
Las aguas de los océanos se encuentran en continuo movimiento. De entre las múltiples formas que tienen sus aguas de moverse, una de las más importantes, por su influencia en el clima de nuestro planeta, son las llamadas corrientes oceánicas o corrientes marinas, que recorren miles de kilómetros como si de auténticos ríos en el mar se tratara.
Quizás el mejor ejemplo de estas persistentes corrientes sea la conocida como Corriente del Golfo, en el Atlántico Norte, que desde hace siglos ha venido favoreciendo el tráfico marítimo entre América y Europa. La Corriente del Golfo, que en algunas zonas llega a alcanzar los 10 km/h, transporta agua cálida desde Cuba y Florida, en el Golfo de México, hasta el NO de Europa. Ésta discurre a lo largo de la costa E de los Estados Unidos para finalmente girar a la derecha y bañar las costas atlánticas europeas. Sus aguas cálidas templan así las temperaturas de las islas británicas o las costas de Noruega, haciendo su clima más benigno del que en teoría les correspondería a esas latitudes.
La Corriente del Golfo no es algo aislado, sino que forma parte de un sistema de corrientes mucho más complicado, que gira en el sentido de las agujas del reloj en la cuenca del Atlántico Norte. Sistemas similares también aparecen en el Pacífico, como la corriente de Kuroshio, que conecta la costa E asiática con la costa W de Norte América, o la corriente australiana del E, en su día popularizada por la película de dibujos animados “Buscando a Nemo”.
Todas estas corrientes giran, se bifurcan, se entrelazan y se extienden a lo largo de miles de kilómetros formando parte de un complicado y delicado engranaje que actúa a escala planetaria. Cómo funciona este mecanismo, cómo se relacionan unas corrientes con otras, cómo dependen de los movimientos atmosféricos y cómo influyen en el clima global de nuestro planeta son preguntas actuales, que los científicos se afanan en responder. A día de hoy, se conoce bien qué factores ponen en marcha estas corrientes. Por una parte, está la energía que nos llega del Sol en forma de calor (radiación electromagnética), y, por otra parte, aunque en menor medida, está la rotación terrestre.
Veamos con un poco más de detalle cómo intervienen estos dos factores. Comencemos por el primero: la radiación solar.
Una buena parte de la radiación que del Sol nos llega, calienta, es decir, se transforma en calor. Determinar cuánto se calienta una zona determinada de la superficie terrestre suele ser algo complicado puesto que intervienen muchos factores, como la época del año, la latitud, si hay nubes o ha llovido el día anterior, etc. Pero visto a lo largo de un año, en promedio, la Tierra se recibe más energía del Sol en las zonas ecuatoriales que en los Polos. Por ello, la temperatura media anual del planeta es menor en los Polos que en el Ecuador. Para el agua del mar en la superficie podemos estar hablando de una diferencia que puede alcanzar hasta 30ºC. La Tierra, ante esta situación, busca infructuosamente un equilibrio tratando de homogeneizar sus temperaturas. Una de las formas más eficientes que tiene para ello, es poner en marcha corrientes de agua y de aire que saquen el exceso de calor del Ecuador y lo lleven hacia las regiones polares, es decir, la Tierra responde estableciendo vientos y corrientes marinas.
En cuanto a los vientos, éstos actúan de dos maneras para redistribuir ese exceso de calor ecuatorial. Por un lado, lo hacen moviendo directamente masas de aire cálido hacia regiones más frías, y, por el otro, extrayendo calor de los océanos tropicales cuando se evapora agua y liberando ese mismo calor en un entorno más frío cuando el vapor de agua se condensa. A ese calor se le llama calor latente de evaporación y el proceso es el mismo que tiene lugar cuando el agua de un botijo se enfría: la evaporación requiere energía que se extrae del agua del líquido, enfriándolo. Un ejemplo dramático de este tipo de transferencia de energía en forma de calor latente entre océanos y atmósfera son las tormentas tropicales conocidas como ciclones o huracanes. Los ciclones son capaces de transportar lejos de los océanos tropicales grandes cantidades de energía/calor en muy poco tiempo. Por eso, se teme que el calentamiento global incremente la ocurrencia de estos fenómenos, cuyas consecuencias son tantas veces devastadoras.
Los océanos, por su parte, al igual que los vientos, compensan el exceso de calor en el Ecuador transportando agua caliente hacia zonas más frías mediante corrientes marinas. Debemos tener en cuenta además que estas corrientes son ayudadas por los vientos, ya que el viento al soplar es capaz de empujar consigo grandes masas de agua por el rozamiento existente entre el aire y el agua. Para hacernos una idea, la circulación del aire, lo que percibimos como viento, es como una cuchara gigantesca que nunca deja de remover los océanos, como si de un gran tazón de sopa se tratara. No obstante, el transporte de calor en el agua es mucho más lento, pero de efectos más duraderos que en el aire, debido a la mayor densidad del agua y a su mayor capacidad de almacenar calor. A esta última propiedad del agua de almacenar calor o energía se la denomina capacidad calorífica y su efecto lo conocen bien los que viven en poblaciones costeras, que disfrutan de temperaturas más suaves porque los cambios de temperatura del día a la noche o de verano a invierno son atenuados por la presencia del mar.
Como vemos, todos estos procesos, que están directa o indirectamente causados por el calor generado por la radiación solar, son capaces de generar corrientes de aire y agua. Por eso, entre otras cosas, se piensa que nuestras emisiones de gases de efecto invernadero, las cuales influyen en la radiación neta que recibimos del Sol, puedan alterar tanto las corrientes oceánicas como los sistemas de vientos y trastocar aún más el equilibrio climático del nuestro planeta. En el próximo programa hablaremos del otro protagonista en el movimiento de los océanos: La rotación terrestre.
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
40,8 millones de audios servidos desde 2009
Agradecemos la donación de:
Angel Quelle Russo
“Vuestra labor de divulgación de la ciencia y en particular del apoyo a los científicos españoles me parece muy necesario e importante. Enhorabuena.”
Angel Rodríguez Díaz
“Seguid así”
Anónimo
Mauro Mas Pujo
Maria Tuixen Benet
“Nos encanta Hablando con Científicos y el Zoo de Fósiles. Gracias.”
Daniel Dominguez Morales
“Muchas gracias por su dedicación.”
Anónimo
Jorge Andres-Martin
Daniel Cesar Roman
“Mecenas”
José Manuel Illescas Villa
“Gracias por vuestra gran labor”
Ulrich Menzefrike
“Donación porque me gustan sus podcasts”
Francisco Ramos
Emilio Rubio Rigo
Vicente Manuel CerezaClemente
“Linfocito Tcd8”
Enrique González González
“Gracias por vuestro trabajo.”
Andreu Salva Pages
Emilio Pérez Mayuet
“Muchas gracias por vuestro trabajo”
Daniel Navarro Pons
“Por estos programas tan intersantes”
Luis Sánchez Marín
Jesús Royo Arpón
“Soy de letras, sigo reciclándome”