Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

Origami de ADN

Quilo de Ciencia podcast - cienciaes.com

Como sabemos, el origami, o papiroflexia, es el arte del plegado de papel. Con imaginación e ingenio, el papel puede plegarse de muy diversas formas para generar objetos similares a aves, aviones, barcos, sombreros, etc. Pues bien, gracias a un interesante avance de la nanotecnología, se ha conseguido plegar también ADN para generar estructuras y objetos sorprendentes. Veamos cómo.
El objetivo central de la nanotecnología es el posicionamiento y organización de la materia con precisión cercana al nanómetro. Recordemos que un metro contiene mil millones de nanómetros y que una bacteria de tamaño medio puede medir unos 10.000 nanómetros, por lo que la nanotecnología, probablemente, alcanza el límite de lo que es posible manipular.

Sin embargo, la nanotecnología se encuentra en la base de los sistemas biológicos naturales, desde los flagelos bacterianos al cerebro humano, formados por estructuras que se ensamblan de manera automática. Se dice que el arte imita a la Naturaleza; no hay duda de que la tecnología debe hacerlo, o de otra forma no funcionaría. Desde hace algunos años, los científicos persiguen el sueño de imitar a la Naturaleza también en la escala nanométrica. Para ello, aunque han explorado una amplia variedad de materiales inorgánicos (por ejemplo nanotubos de carbono), moléculas orgánicas y polímeros, se han fijado también en moléculas biológicas. Una de esas moléculas, quizá la más importante, es el ADN.

ADN materialista

La molécula de ADN posee características que la convierten en muy atractiva para su uso en nanotecnología. Su diámetro es de solo 2 nanómetros, aunque su longitud puede ser mucho mayor. La variabilidad en la longitud permite que la molécula sea rígida si es corta (menos de 50 nanómetros), pero flexible, si es larga, lo que permite utilizar fragmentos cortos como soportes y otros largos, en cambio, como “hebras” para “tejer” estructuras. Existe también una tecnología química del ADN que permite sintetizarlo y modificarlo con facilidad. Por último, las dos hebras de la molécula de ADN se unen espontáneamente entre sí, si poseen secuencias de “letras” complementarias. Esta propiedad es muy importante para permitir diseñar estructuras que se ensamblen de manera automática. Hay que precisar, no obstante, que el uso de ADN en nanotecnología no está relacionado con su papel biológico como almacén de información genética, que se basa precisamente en la complementaridad de la secuencia de letras entre sus dos hebras. En nanotecnología, el ADN se utiliza, simplemente, como material biocompatible de construcción.

La capacidad de autoensamblaje de dos hebras de ADN de secuencia complementaria solo permitiría, no obstante, generar moléculas lineales. Para generar estructuras en dos o tres dimensiones, los investigadores buscaron generar ADN ramificado, no lineal, el cual, no obstante, también existe en la Naturaleza y se produce en el momento de la replicación de esta molécula durante la división celular. En 1982, el científico Nadrian C. Seeman, inspirándose en los grabados del pintor holandés M.C. Escher, fue el primero en imaginar la posibilidad de combinar varias moléculas pequeñas de ADN ramificado, que poseían fragmentos cortos de secuencias complementarias en sus extremos, los cuales permitían su ensamblaje una vez puestas en contacto. Este investigador llevó a cabo su idea mediante la construcción, por primera vez, de un nanocubo hueco, formado por aristas de ADN, lo que es considerado hoy como el primer paso en el establecimiento del nuevo campo de la nanotecnología de ADN. Inmediatamente, Seeman propuso que una aplicación potencial de estas nanoestructuras podría ser su uso como “andamios” moleculares para posicionar otras moléculas en el espacio y facilitar así su manipulación y estudio, lo que demostró hace dos años.

Tras el nacimiento de la nanotecnología de ADN, la investigación tomó impulso y el propio Nadrian C. Seeman, junto con otros investigadores, desarrollaron nuevas técnicas de ensamblaje de ADN en estructuras cada vez más complejas y caprichosas. Sin embargo, continuaba sin ser posible el ensamblaje de estructuras con geometría tridimensional elaborada, similar a las de muchas moléculas naturales. Un avance fundamental para alcanzar este objetivo fue realizado por Paul Rothemund, en 2006, inventor de la técnica del Orígami de ADN, que tal vez podemos también llamar adenoplaxia.

Plegados de diseño

Para entender cómo funciona el plegado artificial de ADN, imaginemos que tenemos una larga ristra de una sola de las tiras de velcro, por ejemplo, la que tiene los pelillos suaves (que en este ejemplo sería como una larga molécula de una sola hebra de ADN). Esta tira de velcro puede ser plegada en las formas que deseemos utilizando pequeños trozos de velcro complementario (el de los ganchitos más duros) cuyas dos mitades pegaremos donde deseemos en dos puntos separados diferentes de la tira de velcro suave. De esta manera, podremos doblar a la tira larga de velcro de muchas maneras, produciendo formas de nuestra invención. De la misma manera, una larga hebra de ADN puede plegarse utilizando trocitos de ADN de secuencias complementarias a las de distintas partes de esta hebra.

Muy recientemente, un perfeccionamiento de esta técnica, desarrollado por investigadores del Instituto de Biodiseño de la Universidad de Arizona, ha permitido producir formas tridimensionales de nanodiseño, mediante hebras de ADN plegadas de esa manera. Estas formas incluyen cuencos en forma de ensaladera, óvalos tridimensionales en forma de balones de rugbi, o incluso un pequeño jarrón de “nanoartesanía”. Estos resultados han sido publicados en la revista Science.

Esta tecnología ofrece numerosas promesas como, por ejemplo, su empleo en la industria nanoelectrónica o la generación de nanomáquinas con funciones específicas. Habrá que esperar pero, probablemente, muchas de estas promesas serán pronto realidad.

OBRAS DE JORGE LABORDA.

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo

One Moon one civilization why the Moon tells us we are alone in the universe

Adenio Fidelio

El embudo de la inteligencia y otros ensayos

Las mil y una bases del ADN y otras historias científicas

Se han clonado los dioses.


Botón de donación
Hace 11 años que levantamos el vuelo y queremos seguir volando. Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
33,5 millones de audios servidos desde 2009

Agradecemos la donación de:

Fernando de Bayon Mecenas

Manuel Torres Sevilla Mecenas

Timoteo Jesús Colomino
“Apoyo a la ciencia” Mecenas

Daniel César Román Mecenas

Eva Morales Galindo
Mecenas

Sergio Requena
“!Muchos abrazos! ¿Qué os parece hacer un programa sobre el deporte de la escalada en clave científica?”
Mecenas

José Luis Sánchez Lozano
Mecenas

Ignacio Arregui
Mecenas

Fernando Antonio Navarrete Porta
Mecenas

David Valentín Puertas de la Plaza
Mecenas

Sebastián Ulises Abdel Aguiar
Mecenas

Susana Larrucea Mecenas

José Luis Orive Anda
“Agradecimiento” Mecenas

Carlos Serrano
Mecenas

Rubén Barrante
Mecenas

Diego Jesús Rosa Gil
“Muchas gracias por vuestros programas*
Mecenas

Celestino Montoza Jarque
“Ni el ERTE, ni pagar a hacienda ha evitado mi humilde donativo para agradeceros el conocimiento que ofrecéis.”
Mecenas

JMiguel Zubillaga Veramend
Mecenas

Juan Luis Jimeno Higuero
Mecenas

Marlon Laguna
Mecenas

Rosangel Tejeda Mecenas

Anónimo
“Reciban saludos y gratitud enviados desde México. Gracias por su continuado esfuerzo.”
Mecenas

Luis Fernando García Álvarez Mecenas

Emilio Pérez Mayuet
“Gracias por vuestro trabajo” Mecenas

Daniel Pérez Alonso Mecenas

Ricardo Sacristán Laso
Mecenas

Jorge Olalla
Mecenas

Juan Cuadro Espada
Mecenas

Montserrat Pérez González
Mecenas

Federico Roviralta Pena
Mecenas

Benjamín Toral Fernández
Mecenas

Alberto Hernando Martínez
“Me quedo en casa escuchando Cienciaes”
Mecenas

Jesús Casero Manzanaro
“Seguir, por favor.”
Mecenas

Ramón Bernardo
Mecenas

Timoteo Jesús Colomino Ceprian
“Apoyo a la Ciencia”
Mecenas

Antonio Castro Casal
Mecenas

Daniel César Román Sáez
Mecenas

Miguel García Cordero
“Gracias por tanta horas de conocimiento y entretenimiento. No tengo palabras para agradeceros la dedicación y el esfuerzo que hacéis por mantener este proyecto. Me uno al grupo de amigos que colaboran a conseguirlo. Un fuerte abrazo a todos y en especial a ti Ángel.”
Mecenas

Javier Martin Ona
Mecenas

Carolina Ledesma Prieto
“Gracias por el trabajo que hacen”
Mecenas

Claudio Leon Delgado
Mecenas

José María Aritzeta Iraola
“Muchas gracias por enseñar y entretener. Me hacéis pasar muy buenos momentos”
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page