Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

La red inmune

La red inmune - Quilo de Ciencia podcast - Cienciaes.com

Este año se cumple el décimo aniversario del descubrimiento de un proceso espectacular de defensa contra las bacterias. Se trata de la producción de trampas extracelulares similares a telas de araña moleculares que atrapan a las bacterias y las preparan para ser engullidas por los llamados macrófagos, unas células presentes en la piel y la superficie de otros tejidos y siempre listas para engullir a las bacterias que por allí puedan penetrar.

Hasta 2004, se conocía que las células de nuestras defensas llamadas neutrófilos realizaban dos funciones fundamentales. La primera era la ingesta –denominada fagocitosis– y la digestión de las bacterias; la segunda, la secreción de sustancias antibióticas. Ese año se descubrió que los neutrófilos activados tras el encuentro con una bacteria infecciosa son capaces de secretar a su exterior diversos componentes antibióticos almacenados en sus vesículas y también de secretar nada menos que ¡ADN! El ADN lleva adheridas las sustancias antimicrobianas y, al mismo tiempo, gracias a ser una larga molécula, forma una red molecular que atrapa a las bacterias y las inmoviliza.

Una vez atrapadas en la red de ADN, las sustancias antibióticas allí concentradas matan a las bacterias con eficiencia. Al mismo tiempo, la red impide que aquellas bacterias que hayan podido escapar a la acción de los antibióticos se dispersen por el organismo, y facilita la acción fagocítica de los macrófagos. Estos, como si de arañas celulares se tratara, acuden atraídos por los neutrófilos y utilizan la red de ADN para comerse mejor a sus presas inmovilizadas en ella. Una ventaja final de las redes moleculares es que inmovilizan también a las sustancias antibióticas producidas por los neutrófilos, las cuales pueden ser tóxicas para nuestras propias células si se dispersan por el organismo.

ASTUTAS BACTERIAS

Sin embargo, no importa cuan espectaculares y eficaces puedan ser las armas empleadas contra el enemigo, este puede usarlas en contra nuestra. Por ejemplo, uno de los microorganismos más astutos para escapar a las defensas inmunes es la bacteria Staphylococcus aureus. Esta bacteria utiliza varias estrategias contra las células del sistema inmune. Una de ellas es que es capaz de dejarse fagocitar por los macrófagos, pero evitar ser digerida por ellos, por lo que la bacteria vive dentro de estas células. Cuando la bacteria detecta un cambio de condiciones favorable, se reproduce en el interior del macrófago, lo mata, e inicia otra infección. S. aureus es igualmente capaz de secretar sustancias tóxicas para los neutrófilos: la muerte de muchas de estas células beneficia el progreso de la bacteria. No contenta con esas estrategias de evasión, acaba de descubrirse ahora que S. aureus es es capaz de utilizar al ADN de la red molecular secretada por los neutrófilos para producir sustancias tóxicas que matan a los macrófagos.

Investigadores de la Universidad de Chicago, que publican sus resultados en la revista Science, describen cómo esta bacteria produce dos proteínas que transforman el ADN de la red molecular en una sustancia inductora del propio suicidio de los macrófagos, lo que, evidentemente, acaba con su vida. Estas dos sustancias son dos enzimas que catalizan reacciones químicas en el ADN de la red. El primer enzima es la nucleasa del estafilococo, que actúa sobre el ADN y lo rompe en sus constituyentes moleculares básicos, las letras individuales, rompiendo así buena parte de los hilos de la red molecular e inutilizándola. El segundo, es la llamada adenosina sintasa, que actúa sobre uno de los componentes del ADN (la adenina, correspondiente a la letra A) y la convierte en una sustancia llamada 2´-deoxiadenosina. Es esta la inductora del suicidio de los macrófagos.

REVELADORA AUSENCIA

Los autores realizan estos descubrimientos tras una observación crucial. Resulta que en los abscesos (hinchazones llenas de pus) formados por estas bacterias en la piel se encontraban numerosos neutrófilos, pero estaban ausentes los macrófagos, que solo alcanzaban la periferia del núcleo infeccioso. Los investigadores identifican, no obstante, mutantes de la bacteria incapaces de impedir que los macrófagos lleguen al núcleo infeccioso y sean mucho más eficaces contra ellas. Fue el análisis molecular de estos mutantes lo que identificó que carecían de los genes para la producción de las dos enzimas mencionadas.

Para comprobar si la secreción de ambas enzimas era tóxica para los macrófagos, los investigadores los pusieron en su presencia. Para su decepción, inicialmente los enzimas no produjeron toxicidad alguna. Sin embargo, las bacterias y los macrófagos no están nunca solos, sino que en el absceso conviven con los neutrófilos. Por ello, los investigadores decidieron probar si la presencia de neutrófilos era un factor importante. El cultivo en un frasco de laboratorio de macrófagos con neutrófilos activados para producir la red y en presencia de los dos enzimas producidos por la bacteria –pero en ausencia de esta–, sí causó la muerte de los macrófagos. Finalmente, los investigadores confirman que es la producción de 2’-desoxiadenosina la inductora del suicidio de los macrófagos.

Estos nuevos datos nos dicen que las bacterias desarrollan mecanismos insospechados de resistencia que vuelven al propio sistema inmune contra sí mismo. En segundo lugar, estos datos sugieren que el empleo de fármacos que inhiban la acción de estos dos enzimas producidos por S. aureus podrían actuar como eficaces antibióticos, no por su toxicidad contra la bacteria, sino porque permitirían a los macrófagos actuar contra ella. Finalmente, si otras bacterias utilizan mecanismos similares, el descubrimiento de cuáles son nos permitirá aumentar la eficacia del sistema inmune contra las mismas.

NUEVA OBRA DE JORGE LABORDA.

Se puede adquirir aquí:

Circunstancias encadenadas. Ed. Lulu

Circunstancias encadenadas. Amazon

Otras obras de Jorge Laborda

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo


Botón de donación
Hace 11 años que levantamos el vuelo y queremos seguir volando. Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
33,5 millones de audios servidos desde 2009

Agradecemos la donación de:

Fernando de Bayon Mecenas

Manuel Torres Sevilla Mecenas

Timoteo Jesús Colomino
“Apoyo a la ciencia” Mecenas

Daniel César Román Mecenas

Eva Morales Galindo
Mecenas

Sergio Requena
“!Muchos abrazos! ¿Qué os parece hacer un programa sobre el deporte de la escalada en clave científica?”
Mecenas

José Luis Sánchez Lozano
Mecenas

Ignacio Arregui
Mecenas

Fernando Antonio Navarrete Porta
Mecenas

David Valentín Puertas de la Plaza
Mecenas

Sebastián Ulises Abdel Aguiar
Mecenas

Susana Larrucea Mecenas

José Luis Orive Anda
“Agradecimiento” Mecenas

Carlos Serrano
Mecenas

Rubén Barrante
Mecenas

Diego Jesús Rosa Gil
“Muchas gracias por vuestros programas*
Mecenas

Celestino Montoza Jarque
“Ni el ERTE, ni pagar a hacienda ha evitado mi humilde donativo para agradeceros el conocimiento que ofrecéis.”
Mecenas

JMiguel Zubillaga Veramend
Mecenas

Juan Luis Jimeno Higuero
Mecenas

Marlon Laguna
Mecenas

Rosangel Tejeda Mecenas

Anónimo
“Reciban saludos y gratitud enviados desde México. Gracias por su continuado esfuerzo.”
Mecenas

Luis Fernando García Álvarez Mecenas

Emilio Pérez Mayuet
“Gracias por vuestro trabajo” Mecenas

Daniel Pérez Alonso Mecenas

Ricardo Sacristán Laso
Mecenas

Jorge Olalla
Mecenas

Juan Cuadro Espada
Mecenas

Montserrat Pérez González
Mecenas

Federico Roviralta Pena
Mecenas

Benjamín Toral Fernández
Mecenas

Alberto Hernando Martínez
“Me quedo en casa escuchando Cienciaes”
Mecenas

Jesús Casero Manzanaro
“Seguir, por favor.”
Mecenas

Ramón Bernardo
Mecenas

Timoteo Jesús Colomino Ceprian
“Apoyo a la Ciencia”
Mecenas

Antonio Castro Casal
Mecenas

Daniel César Román Sáez
Mecenas

Miguel García Cordero
“Gracias por tanta horas de conocimiento y entretenimiento. No tengo palabras para agradeceros la dedicación y el esfuerzo que hacéis por mantener este proyecto. Me uno al grupo de amigos que colaboran a conseguirlo. Un fuerte abrazo a todos y en especial a ti Ángel.”
Mecenas

Javier Martin Ona
Mecenas

Carolina Ledesma Prieto
“Gracias por el trabajo que hacen”
Mecenas

Claudio Leon Delgado
Mecenas

José María Aritzeta Iraola
“Muchas gracias por enseñar y entretener. Me hacéis pasar muy buenos momentos”
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page