El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.
Lo difícil no parece ser que la vida siga, sino, sobre todo, que la vida aparezca.
¿Cuándo comenzó la vida sobre la Tierra? La respuesta a esta pregunta, mucho más sencilla que la de cómo comenzó la vida, es sin embargo aún desconocida. No obstante, sí conocemos que la vida no pudo surgir antes de que los procesos fundamentales para la síntesis de las moléculas que la componen se iniciaran sobre la faz del planeta.
Uno de estos procesos, tal vez el más importante, es la fijación del nitrógeno. Este consiste en la transformación del nitrógeno gaseoso presente en la atmósfera en amoniaco, cianuro o nitritos. Mientras el nitrógeno gaseoso, formado por la unión fuerte de dos átomos de nitrógeno, es relativamente inerte y reacciona muy difícilmente con otros átomos, el nitrógeno en forma de amoniaco, cianuros o nitritos es más reactivo y puede unirse a otros átomos, en particular a átomos de carbono, para dar lugar, entre otras cosas, a los aminoácidos y a las bases nitrogenadas que almacenan la información génica en los ácidos nucleicos. Por esta razón, es evidente que la vida no pudo comenzar antes de que se iniciara el proceso químico de fijación del nitrógeno.
Desde hace muchos millones de años, la fijación del nitrógeno se lleva a cabo por los microorganismos llamados diazótrofos. Estos microrganismos cuentan con enzimas capaces de acelerar las reacciones químicas que rompen los tres enlaces químicos entre los dos átomos del nitrógeno gaseoso. Estas enzimas contienen en su estructura átomos de hierro, vanadio o molibdeno, necesarios para catalizar la reacción. No es preciso incidir en la extrema importancia que estos microorganismos tienen para el mantenimiento de la vida sobre la Tierra.
Ciertamente, antes de la aparición de los diazótrofos la fijación del nitrógeno debía realizarse de manera puramente química. Las reacciones químicas que fijaban nitrógeno podían ser estimuladas por el calor de fuentes geotérmicas, por luz solar de determinadas frecuencias o por descargas eléctricas de las tormentas de la Tierra primitiva. Estos estímulos pudieron permitir la acumulación de moléculas orgánicas que, junto con las aportadas desde el exterior por colisiones con asteroides y cometas, finalmente originaron los primeros organismos vivos. Sin embargo, estos no pudieron progresar mucho sin ser capaces de catalizar la fijación del nitrógeno de manera independiente de los lentos procesos químicos. Fue cuando estos organismos generaron los enzimas catalizadores de la fijación del nitrógeno cuando la vida pudo realmente comenzar a florecer y quedar también fijada sobre la Tierra. ¿Cuándo sucedió este hecho?
Molibdeno y oxígeno
Los estudios realizados hasta hoy sugerían que la capacidad de fijación del nitrógeno surgió hace unos 2.000 millones de años, cerca de 1.500 millones de años después de que la vida apareciera sobre la Tierra. Esto implicaba un largo periodo de “crisis del nitrógeno”, durante el cual la evolución de la vida dependió de procesos químicos que los seres vivos no podían controlar ni estimular en modo alguno.
Ahora, varios investigadores han analizado con técnicas muy sensibles la composición isotópica del nitrógeno presente en rocas sedimentarias que datan desde hace 2.750 a 3.200 millones de años, localizadas en el norte de Australia y Sudáfrica. Estas rocas son unas de las más antiguas de la Tierra y están muy bien conservadas. Se formaron por sedimentación de depósitos costeros y no han sido modificadas por otros procesos geoquímicos; en particular, durante su formación, no sufrieron cambios causados por la oxidación, ya que por aquel entonces la atmósfera carecía de oxígeno, puesto que la fotosíntesis, el proceso vivo que lo libera a la atmósfera, no se había producido aún en los seres vivos.
El análisis de los diversos átomos de nitrógeno de distinta masa atómica, los llamados isótopos, contenidos en estas rocas indica que su proporción es la esperable si este nitrógeno ha sido fijado por procesos bioquímicos y no solo químicos. Esto implica que los seres vivos ya habían “inventado” hace 3.200 millones de años al menos uno de los genes necesarios para producir un enzima que cataliza la reacción química de fijación del nitrógeno.
Los análisis también sugieren que el primer enzima capaz de realizar la catálisis de la reacción de fijación del nitrógeno contenía molibdeno como átomo catalizador. Este tipo de enzima es el más común de los tres tipos de enzimas fijadores de nitrógeno que existen hoy, lo cual es comprensible porque el molibdeno es liberado de los minerales que lo contienen tras su oxidación por el oxígeno atmosférico, por lo que es fácilmente accesible a los seres vivos. Sin embargo, en ausencia de oxígeno, el molibdeno no es liberado. Por esta razón, los investigadores especulan con la posibilidad de que algún proceso de oxidación generado por los escasos seres vivos que poblaban el planeta pudo acelerar la liberación del molibdeno y permitir así su utilización por los enzimas fijadores del nitrógeno.
Sea lo que fuera lo que sucediera, esos nuevos datos indican que una vez aparecida sobre la Tierra, la vida fue capaz de inventar con rapidez estrategias bioquímicas para su expansión y evolución, y quedó fijada sobre nuestro planeta. Lo difícil, por tanto, no parece ser que la vida siga, sino, sobre todo, que la vida aparezca. Su aparición continúa siendo uno de los misterios más fundamentales de la ciencia.
Referencia: Eva E. Stüeken, Roger Buick, Bradley M. Guy, Matthew C. Koehler. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature, 2015; DOI: 10.1038/nature14180
Obras de divulgación de Jorge Laborda
Quilo de Ciencia Volumen I. Jorge Laborda
Quilo de Ciencia Volumen II. Jorge Laborda
Quilo de Ciencia Volumen III. Jorge Laborda
Quilo de Ciencia Volumen IV. Jorge Laborda
Quilo de Ciencia Volumen V. Jorge Laborda
Quilo de Ciencia Volumen VI. Jorge Laborda
Quilo de Ciencia Volumen VII. Jorge Laborda
Circunstancias encadenadas. Ed. Lulu
Circunstancias encadenadas. Amazon
Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo
One Moon one civilization why the Moon tells us we are alone in the universe
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
36,4 millones de audios servidos desde 2009
Agradecemos la donación de:
Alejandro Acosta Espinoza
Mecenas
Jairo Ospino Rodriguez
Mecenas
Rafa Castillejo
“Soy profesor de física y química en un instituto de enseñanza secundaria en Mijas Costa y este año he utilizado los podcasts de CienciaEs para que los alumnos hicieran exposiciones a sus compañeros sobre los temas que ellos elegían.”
Mecenas
Javier Gorriz Ortiz
Mecenas
Fidel Díaz Rodríguez
Mecenas
Anónimo
“Miles de gracias por el esfuerzo y felicitaciones a todos, en particular a la Dra Josefina Cano por sus doscientas aportaciones. Acepten un abrazo agradecido desde México.”
Mecenas
Carlos Serrano
Mecenas
Eulogio González Moreno
“Encantado de apoyaros. Realizáis unos programas estupendos.”
Mecenas
Wendy Trollope
Mecenas
Angel Manuel García Martín
Mecenas
Mauro Mas
Mecenas a través de Patreon
María Elena García Martín
Mecenas a través de Patreon
Anónimo
“Agradecido por su esfuerzo, los saludo desde México.”
Mecenas
Pilar Soler
Mecenas
Francisco Javier Gallegos Casado
Mecenas
Daniel Faba Corral
Mecenas
Marcos López Montes
Mecenas
José Luis Moreno González
Mecenas
Alvaro Vallejo
“Muchísimas gracias por tan maravilloso trabajo de divulgación. Ustedes me acompañan varias horas al día, todos los días.”
Mecenas
Juan Gomez-Cuetara
“¡Una gran programa!!! Es de agradecer que deis difusión a lo que los científicos españoles están haciendo.”
Mecenas
Alfredo Diaz Miranda
“Mi profundo y sincero agradecimiento para todos en CienciaEs pero en especial para Angel Lozano y Jorge Laborda por la esmerada labor que realizan.”
Mecenas
Jorge Valencia Jiménez
Mecenas
Anónimo
“Tarde pero sin sueño, mis admirados divulgadores. Un abrazo agradecido desde el otro lado del Atlántico.”
Mecenas
María del Carmen Colodrero
Joaquín Méndez Colodrero
Mecenas
Carlos Fernández
Mecenas
Carlos Garcia Gutiérrez
Mecenas
Marian y Miguel Ángel
“Muchas gracias por tu trabajo. La Ciencia al alcance de todos.”
Mecenas
Carlos Serrano
“Un placer cooperar un poco con su proyecto. Buen trabajo!”
Mecenas
Francisco Javier Aguilar
Mecenas
Francisco J. García Pato
Mecenas
Jesús López Tapia
“Querido Ángel. Me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas
Javier Olveira
“Gracias por seguir realizando divulgación de calidad.”
Mecenas
Sara Carrero
“Aprovecho para daros la enhorabuena por el espacio “Hablando con Científicos”, que me gusta especialmente.”
Mecenas
Mariano Redondo de la Villa
Mecenas
Javi Zumaia
“En plena era de la desinformación, vuestra labor dedicada a la divulgación científica no hace sino aportar un balón de oxígeno a todos los amantes de la ciencia.”
Mecenas