Cienciaes.com

Quilo de Ciencia podcast - cienciaes.com suscripción

Quilo de Ciencia

El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.

Atracción fetal

Atracción fetal - Quilo de Ciencia podcast - CienciaEs.com

No revelaré nada nuevo al decir que la hemoglobina es la proteína contenida en los glóbulos rojos encargada de captar el oxígeno en los pulmones y de transportarlo a los tejidos del organismo. La hemoglobina multiplica por siete la capacidad transportadora de oxígeno de la sangre, por lo que resulta vital para que animales tan grandes como las ballenas puedan disponer de oxígeno en todos los lugares de sus cuerpos.

Tal vez menos conocido sea el hecho de que la hemoglobina está formada por la unión de cuatro cadenas de proteína producidas por genes diferentes. A estas moléculas se les llama subunidades de la hemoglobina. Tenemos, en primer lugar, la cadena proteica alfa, de la que la hemoglobina posee dos subunidades. A estas dos se le unen otras dos subunidades de la cadena llamada beta. Así, la hemoglobina es un tetrámero (del griego: cuatro unidades) alfa2-beta2.

Probablemente aún menos conocido es que la hemoglobina fetal es diferente de la adulta. La hemoglobina del feto en desarrollo también está formada por cuatro subunidades, pero a las dos subunidades alfa se les unen dos subunidades de otra cadena proteica, producida por un gen diferente, llamada cadena gamma. La hemoglobina fetal es un tetrámero alfa2-gamma2.

¿Por qué sucede esto? ¿Por qué no puede la hemoglobina fetal ser la misma que la adulta?

La razón es fácil de comprender. Como sabemos, el feto no respira aire, al estar dentro del útero y bañado por el líquido amniótico, y debe obtener el oxígeno que necesita a partir de la sangre de la madre. Por esta razón, el feto necesita una hemoglobina que atraiga con más fuerza al oxígeno que la hemoglobina de la madre. Solo de este modo, la hemoglobina del feto puede “robar” el oxígeno a la hemoglobina de la madre y quedárselo, para trasportarlo a los órganos en crecimiento.

Tras el nacimiento, sin embargo, la hemoglobina fetal se convierte en un problema. Las mayores necesidades de oxígeno debido al movimiento hacen que esta hemoglobina, que se une con fuerza al oxígeno captado en los pulmones, no lo ceda ahora a las células que lo necesitan con la debida diligencia. La hemoglobina fetal no está adaptada a las necesidades de la vida extrauterina.

Afortunadamente, a lo largo de la evolución, la Naturaleza ha ido aprendiendo hasta alcanzar el alto grado de sabiduría que hoy posee. Esta sabiduría consigue que los organismos “apaguen” el gen que produce la cadena gamma de la hemoglobina fetal y “enciendan” el gen que produce la cadena beta: la hemoglobina fetal desaparece de la circulación y aparece la hemoglobina adulta, la cual, puesto que atrae con menos fuerza al oxígeno –aunque aún con la necesaria–, una vez captado en los pulmones lo cede con más facilidad a los tejidos y órganos.

Mutaciones

Sin embargo, en algunos casos, es posible que el recién nacido posea mutaciones perniciosas en los genes que producen la cadena beta de la hemoglobina, las cuales conducirán a la producción de una hemoglobina defectuosa que no podrá transportar adecuadamente el oxígeno, lo que generará los síntomas de una anemia. Se producen las llamadas hemoglobinopatías, en lenguaje médico. Por ejemplo, una mutación particular en el gen de la cadena beta de la hemoglobina produce la llamada anemia falciforme, caracterizada porque la hemoglobina defectuosa deforma a los glóbulos rojos, confiriéndoles un aspecto de hoz (de ahí lo de falciforme). Estos glóbulos rojos son destruidos con mayor rapidez por el bazo y el hígado, lo que genera la anemia, además de otros graves problemas debido a la oclusión de capilares.

Otras enfermedades producidas por defectos en los genes de las cadenas de la hemoglobina son las denominadas talasemias o “anemias del mar” (palabra derivada de “Talasa”, diosa del mar de la mitología griega , por ser las talasemias comunes en los países del Mediterráneo). La más común de las talasemias es también la que resulta de mutaciones en los genes de la cadena beta de la hemoglobina, por lo que se llama beta talasemia. Se estima que alrededor de 80 millones de personas son portadoras de una mutación que podría causar la beta talasemia si es heredada de ambos progenitores.

En el caso de estos enfermos, se ha detectado un incremento de la presencia de hemoglobina fetal en su sangre. Es como si el cuerpo intentara sobrevivir produciendo una hemoglobina que funciona mejor que la hemoglobina mutada adulta, aunque no lo haga de manera óptima.

Estos conocimientos indican que algunas anemias y talasemias podrían ser tratadas mediante el “encendido” de los genes de la hemoglobina fetal gamma, que se apagan tras el nacimiento. El problema es que no sabemos con certeza por qué mecanismo molecular se apagan estos genes, lo que es necesario para poder intervenir sobre él, revirtiéndolo en el caso de estos pacientes.

Ahora, un grupo de investigadores, dirigidos por el Dr. Takahiro Maeda, de la Universidad de Harvard, descubren que una proteína, llamada LRF, perteneciente a la familia de los factores de transcripción, es decir, de las proteínas que regulan el funcionamiento del ADN para producir todas las proteínas que las células necesitan, es uno de los principales responsables del apagado del gen de la cadena gamma de la hemoglobina. Estos resultados han sido publicados en el último número de la prestigiosa revista Science.
Este descubrimiento permitirá el desarrollo de nuevos fármacos que impidan la actividad de LRF, lo que conducirá a la producción de hemoglobina fetal en aquellos adultos carentes de una cadena beta normal de la hemoglobina. Esperemos que esta esperanza se convierta pronto en realidad.

Referencia: Masuda, T. et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 15 january 2016 • Vol 351 Issue 6270 pp. 285.

Obras de divulgación de Jorge Laborda

Quilo de Ciencia Volumen I. Jorge Laborda
Quilo de Ciencia Volumen II. Jorge Laborda
Quilo de Ciencia Volumen III. Jorge Laborda
Quilo de Ciencia Volumen IV. Jorge Laborda
Quilo de Ciencia Volumen V. Jorge Laborda
Quilo de Ciencia Volumen VI. Jorge Laborda
Quilo de Ciencia Volumen VII. Jorge Laborda

Circunstancias encadenadas. Ed. Lulu

Circunstancias encadenadas. Amazon

Una Luna, una civilización. Por qué la Luna nos dice que estamos solos en el Universo

One Moon one civilization why the Moon tells us we are alone in the universe

Adenio Fidelio

El embudo de la inteligencia y otros ensayos


Botón de donación
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
35,9 millones de audios servidos desde 2009

Agradecemos la donación de:

Alfredo Diaz Miranda
“Mi profundo y sincero agradecimiento para todos en CienciaEs pero en especial para Angel Lozano y Jorge Laborda por la esmerada labor que realizan.”
Mecenas

Jorge Valencia Jiménez
Mecenas

Anónimo
“Tarde pero sin sueño, mis admirados divulgadores. Un abrazo agradecido desde el otro lado del Atlántico.”
Mecenas

María del Carmen Colodrero
Joaquín Méndez Colodrero
Mecenas

Carlos Fernández
Mecenas

Carlos Garcia Gutiérrez
Mecenas

Marian y Miguel Ángel
“Muchas gracias por tu trabajo. La Ciencia al alcance de todos.”
Mecenas

Carlos Serrano
“Un placer cooperar un poco con su proyecto. Buen trabajo!”
Mecenas

Francisco Javier Aguilar
Mecenas

Francisco J. García Pato
Mecenas

Jesús López Tapia
“Querido Ángel. Me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas

Javier Olveira
“Gracias por seguir realizando divulgación de calidad.”
Mecenas

Sara Carrero
“Aprovecho para daros la enhorabuena por el espacio “Hablando con Científicos”, que me gusta especialmente.”
Mecenas

Mariano Redondo de la Villa
Mecenas

Javi Zumaia
“En plena era de la desinformación, vuestra labor dedicada a la divulgación científica no hace sino aportar un balón de oxígeno a todos los amantes de la ciencia.”
Mecenas

Alberto Hernando
“A seguir bien:)”
Mecenas

Donación anónima
“Muchas Gracias”
Mecenas

Juan Luján
“Gracias por el placer del saber”
Mecenas

Javier Calpe
Mecenas

Fernando Bayon
Mecenas

Luis M Barreiro
Mecenas

Eduard Capell
Mecenas

Fernando Antonio Navarrete
Mecenas

Anónimo desde México
“Deseando que el 2021 nos encuentre fuertes para – apoyados en la ciencia – tratar de mejorar al mundo y a nuestra especie, les envío un abrazo agradecido por su esfuerzo y dedicación. Muchas gracias, Ángel y todo el equipo.”
Mecenas

Anónimo de Granada
Mecenas

Philip Schlup
Mecenas

Josep Pau Canal
Nuevo mecenas de Paypal

Angels Santesmasses
Mecenas

Peter O’Donovan
Mecenas

Oscar Greggio Ochoa
Nuevo mecenas de Patreon

Jordi Pardo Mani
“Mi contribución es modesta pero mi ánimo hacia vosotros enorme. “
Mecenas

Daniel Alfredo Tenorio
Mecenas

Santiago Machín Hamalainen
Mecenas

Juan Agustín Esteban Jiménez
Mecenas

Javier
Nuevo mecenas de Patreon

Oscar Eduardo Trujillo
Mecenas

Belén Rial Franco
Mecenas

Eduardo Hector Fernández
Mecenas

Norman Vasquez
Mecenas

José Luis Sanchez Lozano
Mecenas

David Valentín
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page