El quilo, con “q” es el líquido formado en el duodeno (intestino delgado) por bilis, jugo pancreático y lípidos emulsionados resultado de la digestión de los alimentos ingeridos. En el podcast Quilo de Ciencia, realizado por el profesor Jorge Laborda, intentamos “digerir” para el oyente los kilos de ciencia que se generan cada semana y que se publican en las revistas especializadas de mayor impacto científico. Los temas son, por consiguiente variados, pero esperamos que siempre resulten interesantes, amenos, y, en todo caso, nunca indigestos.
Ratones con súper narices
El olfato detecta la presencia en el entorno de sustancias químicas volátiles. Estas pueden ser muy diversas y cada una posee una estructura particular, una forma determinada, y unas propiedades químicas y físicas también definidas (carga, masa, etc.). Para detectar las sustancias volátiles, los genomas de los mamíferos cuentan hoy con cientos o incluso miles de genes particulares. Estos producen proteínas receptoras, que se localizan en la membrana de neuronas especializadas –las neuronas olfativas– y están dedicados a la detección de una o de una familia de sustancias similares. El genoma humano cuenta con cerca de 400 de estos genes; el del perro, con unos 800, mientras que el del ratón posee alrededor de 1.400.
Durante la formación del sistema olfativo, las neuronas olfativas van madurando a partir de células madre y cada una elige, aparentemente al azar, uno de estos cientos de genes receptores, que es el que ponen en funcionamiento en su membrana, excluyendo a todos los demás. Un grupo de científicos ha desarrollado una nueva técnica para generar ratones transgénicos cuyas neuronas olfativas no escogen completamente al azar los genes de los receptores olfativos. Apoyándose en años de investigaciones que han desvelado algunos de los secretos sobre cómo las neuronas olfativas eligen sus genes receptores y generan ratones transgénicos con ellos.
Los investigadores comprueban que estos animales son capaces de detectar determinadas sustancias en cantidades más de cien veces inferiores a las normales, pero otras las detectan menos bien. La naturaleza de la sustancia detectada depende que qué gen ha sido modificado y elegido de manera preferente por las neuronas.
Más información en el Blog de Jorge Laborda: Ratones con súper narices
Referencia: D’Hulst et al., MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding. Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.06.047
Doble ataque contra el SIDA
Los anticuerpos son moléculas que se encuentran entre las más importantes de las defensas y poseen una forma característica en forma de Y griega, o ye. Los extremos de los dos brazos de la ye contienen unas “manos” capaces de unirse a otras moléculas con fuerza. Estas moléculas son en general parte de un virus o de una bacteria, y la unión del anticuerpo a ellas dificultará o impedirá su reproducción.
Las “manos” de los anticuerpos no son muy versátiles y están conformadas para unirse solo a una cosa, es decir, sus “dedos” no son móviles y solo pueden agarrarse a aquello que encaja en tal y como están configurados. Los anticuerpos naturales tienen configuradas ambas “manos” de la misma manera, o sea , sus “dedos” están conformados para agarrarse a lo mismo, son, por consiguiente, monoespecíficos. Estos anticuerpos, producidos naturalmente, no son, sin embargo, capaces de neutralizar al VIH.
Investigadores de las universidades de Rockefeller y Harvard han generado anticuerpos biespecíficos, o sea, capaces de unirse a dos especies de moléculas diferentes, a una con una de sus “manos”, y a otra, con la otra “mano”, como herramientas contra el virus VIH.
Estos anticuerpos fueron diseñados de manera que una de sus “manos” se uniera al virus, pero la otra se uniera a una molécula de la membrana de la célula inmune necesaria para que el virus la pueda infectar. Así pues, estos anticuerpos combinan dos posibilidades de bloquear la infección del virus: una mediante su unión al propio virus con una de sus “manos”, y otra mediante la unión, con la otra “mano”, a la “puerta de entrada molecular” que este necesita para infectar a una célula. De hecho, si estos anticuerpos biespecíficos eran utilizados como “vacunas” antes de infectar a animales de laboratorio con el VIH, estos resultaban protegidos de la infección.
Más información en el Blog de Jorge Laborda: Doble ataque contra el SIDA
Referencia: Huang et al. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell 165, 1–11. June 16, 2016. http://dx.doi.org/10.1016/j.cell.2016.05.024.
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
40,6 millones de audios servidos desde 2009
Agradecemos la donación de:
María D Walker
Mecenas
Juan Agustín Esteban Jiménez
Mecenas
Ramón Bernardo
Mecenas
Juan Pedro de Penolite
Mecenas
Juan José Señor López
“Buena Ciencia”
Mecenas
José Luis Montalbán Recio
Mecenas
Familia Herrero Martínez
Mecenas
Víctor Casterán Villacampa
“Apoyo a Cienciaes”
Mecenas
Juan Miguel Alcalá
“Bravo.”
Mecenas
*Jesús Rodríguez Onteniente.
“Dar gracias por su labor de divulgación científica.”
Mecenas
Dr. Ulrich Mencefricke
“Donación porque me gustan sus podcasts”
Mecenas
José Colon
Mecenas
David Webb
“¡Enhorabuena por una labor tan eficaz de divulgación!
Mecenas
David Bueno
“Mecenazgo”
Mecenas
José Luis Sánchez Lozano
“Contribución a vuestro trabajo”
Mecenas
ihortas
Nuevo mecenas
Ulises Gil
Nuevo Mecenas
Marco Arnez
Nuevo Mecenas
Familia Parra Armesto
“Gracias”
Nuevo Mecenas
Francisco Rosado
Mecenas
Vaughan Jackson
Mecenas
Vicente Guinea
Nuevo Mecenas
Juan Andrés García
Nuevo Mecenas
Angel Rodriguez Diaz
“BUEN TRABAJO. Tercer donativo que hago y seguro que no será el último. SEGUID ASÍ”
Mecenas
Enrique González
“Gracias por vuestro trabajo”
Mecenas
Javier Pozo Altillo
Nuevo Mecenas