Cienciaes.com

Hablando con científicos podcast - cienciaes.com suscripción

Hablando con Científicos

El conocimiento científico crece gracias a la labor de miles de personas que se esfuerzan, hasta el agotamiento, por encontrar respuestas a los enigmas que plantea la Naturaleza. En cada programa un científico conversa con Ángel Rodríguez Lozano y abre para nosotros las puertas de un campo del conocimiento.

Fusión Nuclear, presente y futuro. Hablamos con Ángel Ibarra Sánchez

Fusión Nuclear - Hablando con Científicos - CienciaEs.com

A 150 millones de kilómetros de la Tierra se encuentra la fuente de energía más eficiente y cercana que conocemos. Incluso a tan enorme distancia, la energía liberada por nuestra estrella es más que suficiente para mantener vivo el planeta y todas las criaturas que tenemos nuestro hogar en él. No es de extrañar pues, que en un momento de nuestra historia en el que las necesidades de energía crecen de forma alarmante, volvamos nuestra mirada al Sol en busca de soluciones. Una de ellas, quizá la más ambiciosa, consiste en reproducir, aquí en la Tierra, a pequeña escala, por supuesto, la fuente de energía que alimenta el corazón de nuestra estrella: la fusión nuclear.

En el interior del Sol, las condiciones que imperan son tales, que los núcleos desnudos de los átomos de hidrógeno, cargados positivamente, superan su natural repulsión y se funden. En la fusión se genera helio y se pierde una pequeña porción de masa en el proceso. La masa perdida se convierte en energía siguiendo la famosa fórmula de Eistein: E=mc2.

Ese proceso tan simple de explicar, y que en nuestra estrella se produce a un ritmo trepidante que consume 620 millones de toneladas de hidrógeno por segundo, resulta ser, sin embargo, un reto impresionante. A pesar de ello, conseguir la fusión es algo que ya se ha logrado muchas veces, lo realmente difícil es lograrlo de forma que genere energía útil de forma continua para que podamos aprovecharla en nuestro beneficio. Una prueba de la dificultad del reto es que las más sesudas mentes, y las más avanzadas tecnologías, trabajan sin descanso para lograr el diseño de un reactor nuclear de fusión comercial.

Ya se han dado pasos importantes, unos pasos que han demostrado que la producción de energía de fusión controlada en la Tierra es posible, aunque falta por demostrar que es rentable y se puede usar. Hoy tenemos con nosotros a una persona que dedica su vida a ese objetivo. Es don Ángel Ibarra Sánchez, Doctor en Ciencias Físicas y responsable de la División de Tecnología de Fusión del Laboratorio Nacional de Fusión, CIEMAT. Con él vamos a dar un repaso al presente y futuro de la investigación en energía nuclear de fusión. Un futuro que pasa por la creación de nuevos proyectos, uno de los cuales, denominado IFMIF-DONES se ha discutido recientemente en un WorkShop que ha tenido lugar en Granada, ciudad que aspira a ser sede del proyecto.

Historia del desarrollo de un reactor nuclear de fusión.

Si pensamos en imitar la producción de energía que existe en el interior de las estrellas, debemos comenzar por determinar las condiciones que reinan en el núcleo del Sol. Los datos son estremecedores. La temperatura del núcleo solar ronda los 16 millones de grados Kelvin y la densidad es de 160 gr/cm3, es decir, un tetrabrick de un litro lleno de esa materia ¡pesaría 160 kg!

Lógicamente no es necesario imitar al pie de la letra lo que sucede en el Sol para construir un reactor nuclear de fusión. No obstante, la energía que hay que comunicarle a los núcleos de deuterio (que es el núcleo de un átomo de hidrógeno que tiene un protón y un neutrón) y de tritio (también hidrógeno pero con un protón y dos neutrones) es considerable. Dado que los núcleos atómicos son partículas con carga eléctrica positiva, una posibilidad es acelerarlas mientras se mantienen girando en el interior de un donut forzadas por la acción de grandes campos magnéticos para hacerlas chocar y favorecer su fusión. Así, en una botella magnética que no está en contacto con ningún otro material, los núcleos de deuterio y tritio alcanzan velocidades muy grandes para que tengan energía suficiente como para superar su repulsión eléctrica y fundirse. En la fusión se genera un núcleo de helio (2 protones + 2 neutrones) y un neutrón muy energético que, al no tener carga eléctrica, escapa a gran velocidad del confinamiento magnético.

Esta es la teoría básica, lo difícil es conseguir que las reacciones se produzcan de forma continua y extraer la energía generada en el proceso para convertirla en energía eléctrica que pueda alimentar nuestros electrodomésticos. El combustible básico, el deuterio, existe en abundancia en el agua de nuestros mares y océanos. El tritio, en cambio, es un bien escaso. No obstante, el tritio se puede obtener en la propia central, haciendo chocar el neutrón producido con núcleos de litio, un choque que provoca una reacción nuclear que genera tritio. Así pues, si se logra reutilizar el tritio recién creado, el aporte de combustible es continuo e ilimitado.

Dicho así, parece fácil, pero no lo es en absoluto. Las investigaciones lo demuestran con toda claridad. El primer paso importante hacia la fusión nuclear con fines pacíficos (nada que ver con el uso militar que desembocó en la bomba H, en 1952) se dio a conocer en 1968, cuando el científico ruso Sajarov anunció los resultados de un nuevo tipo de reactor por confinamiento magnético llamado Tokamak. Este tipo de reactor fue el modelo que ha servido de base para una línea de desarrollos que vinieron después. En 1978 se fabricó el primer modelo de Tokamak en Europa, que comenzó a funcionar en 1983. Al mismo tiempo, otro modelo fue puesto en funcionamiento en Estados Unidos. Japón se unió a la carrera con su JT-60, en 1985. Todos estos modelos tenían como objetivo demostrar que los reactores de fusión podían producir energía de forma controlada. En los años 90 se consiguieron los primeros éxitos, en 1991 el JET europeo logró producir 1,7 megavatios (MW) de energía, posteriormente la cifra fue en aumento, 10 MW en 1993 y 16MW en 1997.

Aquellos antecedentes sirvieron para dar luz a un proyecto más ambicioso conocido como ITER, actualmente en construcción en Cadarache, Francia. El objetivo de ITER es conseguir la generación de 500 MW de energía de fusión de forma continua durante por lo menos 400 segundos. Un proyecto de un enorme coste que tendrá una duración de 35 años.

Aunque el ITER está todavía en fase de construcción, los científicos ya están preparando el diseño del siguiente proyecto, llamado DEMO, que permita, además, la generación de energía eléctrica. Lógicamente, la construcción de DEMO dependerá de otras muchas investigaciones que permitan conocer qué materiales son los más adecuados para trabajar en las terribles condiciones que se imponen en el interior del reactor, sobre todo los neutrones de alta energía que se liberan durante la fusión.

Ese es el objetivo de un proyecto que se conoce como IFMIF-DONES, cuyas características se han discutido recientemente en un Worlshop que ha tenido lugar en Granada, ciudad que aspira a ser la base de las instalaciones de este futuro proyecto. La instalación prevé la construcción de un acelerador de deuterones que deberán chocar contra un blanco de litio para estudiar el comportamiento de los materiales que deberán trabajar en DEMO.

Les invitamos a escuchar las explicaciones de D. Ángel Ibarra Sánchez, Responsable de la División de Tecnología de Fusión del Laboratorio Nacional de Fusión, CIEMAT. El Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas.


Botón de donación
Hace 11 años que levantamos el vuelo y queremos seguir volando. Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
33,5 millones de audios servidos desde 2009

Agradecemos la donación de:

Fernando de Bayon Mecenas

Manuel Torres Sevilla Mecenas

Timoteo Jesús Colomino
“Apoyo a la ciencia” Mecenas

Daniel César Román Mecenas

Eva Morales Galindo
Mecenas

Sergio Requena
“!Muchos abrazos! ¿Qué os parece hacer un programa sobre el deporte de la escalada en clave científica?”
Mecenas

José Luis Sánchez Lozano
Mecenas

Ignacio Arregui
Mecenas

Fernando Antonio Navarrete Porta
Mecenas

David Valentín Puertas de la Plaza
Mecenas

Sebastián Ulises Abdel Aguiar
Mecenas

Susana Larrucea Mecenas

José Luis Orive Anda
“Agradecimiento” Mecenas

Carlos Serrano
Mecenas

Rubén Barrante
Mecenas

Diego Jesús Rosa Gil
“Muchas gracias por vuestros programas*
Mecenas

Celestino Montoza Jarque
“Ni el ERTE, ni pagar a hacienda ha evitado mi humilde donativo para agradeceros el conocimiento que ofrecéis.”
Mecenas

JMiguel Zubillaga Veramend
Mecenas

Juan Luis Jimeno Higuero
Mecenas

Marlon Laguna
Mecenas

Rosangel Tejeda Mecenas

Anónimo
“Reciban saludos y gratitud enviados desde México. Gracias por su continuado esfuerzo.”
Mecenas

Luis Fernando García Álvarez Mecenas

Emilio Pérez Mayuet
“Gracias por vuestro trabajo” Mecenas

Daniel Pérez Alonso Mecenas

Ricardo Sacristán Laso
Mecenas

Jorge Olalla
Mecenas

Juan Cuadro Espada
Mecenas

Montserrat Pérez González
Mecenas

Federico Roviralta Pena
Mecenas

Benjamín Toral Fernández
Mecenas

Alberto Hernando Martínez
“Me quedo en casa escuchando Cienciaes”
Mecenas

Jesús Casero Manzanaro
“Seguir, por favor.”
Mecenas

Ramón Bernardo
Mecenas

Timoteo Jesús Colomino Ceprian
“Apoyo a la Ciencia”
Mecenas

Antonio Castro Casal
Mecenas

Daniel César Román Sáez
Mecenas

Miguel García Cordero
“Gracias por tanta horas de conocimiento y entretenimiento. No tengo palabras para agradeceros la dedicación y el esfuerzo que hacéis por mantener este proyecto. Me uno al grupo de amigos que colaboran a conseguirlo. Un fuerte abrazo a todos y en especial a ti Ángel.”
Mecenas

Javier Martin Ona
Mecenas

Carolina Ledesma Prieto
“Gracias por el trabajo que hacen”
Mecenas

Claudio Leon Delgado
Mecenas

José María Aritzeta Iraola
“Muchas gracias por enseñar y entretener. Me hacéis pasar muy buenos momentos”
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page