Cienciaes.com

Hablando con científicos podcast - cienciaes.com suscripción

Hablando con Científicos

El conocimiento científico crece gracias a la labor de miles de personas que se esfuerzan, hasta el agotamiento, por encontrar respuestas a los enigmas que plantea la Naturaleza. En cada programa un científico conversa con Ángel Rodríguez Lozano y abre para nosotros las puertas de un campo del conocimiento.

Fusión Nuclear, presente y futuro. Hablamos con Ángel Ibarra Sánchez

Fusión Nuclear - Hablando con Científicos - CienciaEs.com

A 150 millones de kilómetros de la Tierra se encuentra la fuente de energía más eficiente y cercana que conocemos. Incluso a tan enorme distancia, la energía liberada por nuestra estrella es más que suficiente para mantener vivo el planeta y todas las criaturas que tenemos nuestro hogar en él. No es de extrañar pues, que en un momento de nuestra historia en el que las necesidades de energía crecen de forma alarmante, volvamos nuestra mirada al Sol en busca de soluciones. Una de ellas, quizá la más ambiciosa, consiste en reproducir, aquí en la Tierra, a pequeña escala, por supuesto, la fuente de energía que alimenta el corazón de nuestra estrella: la fusión nuclear.

En el interior del Sol, las condiciones que imperan son tales, que los núcleos desnudos de los átomos de hidrógeno, cargados positivamente, superan su natural repulsión y se funden. En la fusión se genera helio y se pierde una pequeña porción de masa en el proceso. La masa perdida se convierte en energía siguiendo la famosa fórmula de Eistein: E=mc2.

Ese proceso tan simple de explicar, y que en nuestra estrella se produce a un ritmo trepidante que consume 620 millones de toneladas de hidrógeno por segundo, resulta ser, sin embargo, un reto impresionante. A pesar de ello, conseguir la fusión es algo que ya se ha logrado muchas veces, lo realmente difícil es lograrlo de forma que genere energía útil de forma continua para que podamos aprovecharla en nuestro beneficio. Una prueba de la dificultad del reto es que las más sesudas mentes, y las más avanzadas tecnologías, trabajan sin descanso para lograr el diseño de un reactor nuclear de fusión comercial.

Ya se han dado pasos importantes, unos pasos que han demostrado que la producción de energía de fusión controlada en la Tierra es posible, aunque falta por demostrar que es rentable y se puede usar. Hoy tenemos con nosotros a una persona que dedica su vida a ese objetivo. Es don Ángel Ibarra Sánchez, Doctor en Ciencias Físicas y responsable de la División de Tecnología de Fusión del Laboratorio Nacional de Fusión, CIEMAT. Con él vamos a dar un repaso al presente y futuro de la investigación en energía nuclear de fusión. Un futuro que pasa por la creación de nuevos proyectos, uno de los cuales, denominado IFMIF-DONES se ha discutido recientemente en un WorkShop que ha tenido lugar en Granada, ciudad que aspira a ser sede del proyecto.

Historia del desarrollo de un reactor nuclear de fusión.

Si pensamos en imitar la producción de energía que existe en el interior de las estrellas, debemos comenzar por determinar las condiciones que reinan en el núcleo del Sol. Los datos son estremecedores. La temperatura del núcleo solar ronda los 16 millones de grados Kelvin y la densidad es de 160 gr/cm3, es decir, un tetrabrick de un litro lleno de esa materia ¡pesaría 160 kg!

Lógicamente no es necesario imitar al pie de la letra lo que sucede en el Sol para construir un reactor nuclear de fusión. No obstante, la energía que hay que comunicarle a los núcleos de deuterio (que es el núcleo de un átomo de hidrógeno que tiene un protón y un neutrón) y de tritio (también hidrógeno pero con un protón y dos neutrones) es considerable. Dado que los núcleos atómicos son partículas con carga eléctrica positiva, una posibilidad es acelerarlas mientras se mantienen girando en el interior de un donut forzadas por la acción de grandes campos magnéticos para hacerlas chocar y favorecer su fusión. Así, en una botella magnética que no está en contacto con ningún otro material, los núcleos de deuterio y tritio alcanzan velocidades muy grandes para que tengan energía suficiente como para superar su repulsión eléctrica y fundirse. En la fusión se genera un núcleo de helio (2 protones + 2 neutrones) y un neutrón muy energético que, al no tener carga eléctrica, escapa a gran velocidad del confinamiento magnético.

Esta es la teoría básica, lo difícil es conseguir que las reacciones se produzcan de forma continua y extraer la energía generada en el proceso para convertirla en energía eléctrica que pueda alimentar nuestros electrodomésticos. El combustible básico, el deuterio, existe en abundancia en el agua de nuestros mares y océanos. El tritio, en cambio, es un bien escaso. No obstante, el tritio se puede obtener en la propia central, haciendo chocar el neutrón producido con núcleos de litio, un choque que provoca una reacción nuclear que genera tritio. Así pues, si se logra reutilizar el tritio recién creado, el aporte de combustible es continuo e ilimitado.

Dicho así, parece fácil, pero no lo es en absoluto. Las investigaciones lo demuestran con toda claridad. El primer paso importante hacia la fusión nuclear con fines pacíficos (nada que ver con el uso militar que desembocó en la bomba H, en 1952) se dio a conocer en 1968, cuando el científico ruso Sajarov anunció los resultados de un nuevo tipo de reactor por confinamiento magnético llamado Tokamak. Este tipo de reactor fue el modelo que ha servido de base para una línea de desarrollos que vinieron después. En 1978 se fabricó el primer modelo de Tokamak en Europa, que comenzó a funcionar en 1983. Al mismo tiempo, otro modelo fue puesto en funcionamiento en Estados Unidos. Japón se unió a la carrera con su JT-60, en 1985. Todos estos modelos tenían como objetivo demostrar que los reactores de fusión podían producir energía de forma controlada. En los años 90 se consiguieron los primeros éxitos, en 1991 el JET europeo logró producir 1,7 megavatios (MW) de energía, posteriormente la cifra fue en aumento, 10 MW en 1993 y 16MW en 1997.

Aquellos antecedentes sirvieron para dar luz a un proyecto más ambicioso conocido como ITER, actualmente en construcción en Cadarache, Francia. El objetivo de ITER es conseguir la generación de 500 MW de energía de fusión de forma continua durante por lo menos 400 segundos. Un proyecto de un enorme coste que tendrá una duración de 35 años.

Aunque el ITER está todavía en fase de construcción, los científicos ya están preparando el diseño del siguiente proyecto, llamado DEMO, que permita, además, la generación de energía eléctrica. Lógicamente, la construcción de DEMO dependerá de otras muchas investigaciones que permitan conocer qué materiales son los más adecuados para trabajar en las terribles condiciones que se imponen en el interior del reactor, sobre todo los neutrones de alta energía que se liberan durante la fusión.

Ese es el objetivo de un proyecto que se conoce como IFMIF-DONES, cuyas características se han discutido recientemente en un Worlshop que ha tenido lugar en Granada, ciudad que aspira a ser la base de las instalaciones de este futuro proyecto. La instalación prevé la construcción de un acelerador de deuterones que deberán chocar contra un blanco de litio para estudiar el comportamiento de los materiales que deberán trabajar en DEMO.

Les invitamos a escuchar las explicaciones de D. Ángel Ibarra Sánchez, Responsable de la División de Tecnología de Fusión del Laboratorio Nacional de Fusión, CIEMAT. El Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas.


Botón de donación
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
36,4 millones de audios servidos desde 2009

Agradecemos la donación de:

Alejandro Acosta Espinoza
Mecenas

Jairo Ospino Rodriguez
Mecenas

Rafa Castillejo
“Soy profesor de física y química en un instituto de enseñanza secundaria en Mijas Costa y este año he utilizado los podcasts de CienciaEs para que los alumnos hicieran exposiciones a sus compañeros sobre los temas que ellos elegían.”
Mecenas

Javier Gorriz Ortiz
Mecenas

Fidel Díaz Rodríguez
Mecenas

Anónimo
“Miles de gracias por el esfuerzo y felicitaciones a todos, en particular a la Dra Josefina Cano por sus doscientas aportaciones. Acepten un abrazo agradecido desde México.”
Mecenas

Carlos Serrano
Mecenas

Eulogio González Moreno
“Encantado de apoyaros. Realizáis unos programas estupendos.”
Mecenas

Wendy Trollope
Mecenas

Angel Manuel García Martín
Mecenas

Mauro Mas
Mecenas a través de Patreon

María Elena García Martín
Mecenas a través de Patreon

Anónimo
“Agradecido por su esfuerzo, los saludo desde México.”
Mecenas

Pilar Soler
Mecenas

Francisco Javier Gallegos Casado
Mecenas

Daniel Faba Corral
Mecenas

Marcos López Montes
Mecenas

José Luis Moreno González
Mecenas

Alvaro Vallejo
“Muchísimas gracias por tan maravilloso trabajo de divulgación. Ustedes me acompañan varias horas al día, todos los días.”
Mecenas

Juan Gomez-Cuetara
“¡Una gran programa!!! Es de agradecer que deis difusión a lo que los científicos españoles están haciendo.”
Mecenas

Alfredo Diaz Miranda
“Mi profundo y sincero agradecimiento para todos en CienciaEs pero en especial para Angel Lozano y Jorge Laborda por la esmerada labor que realizan.”
Mecenas

Jorge Valencia Jiménez
Mecenas

Anónimo
“Tarde pero sin sueño, mis admirados divulgadores. Un abrazo agradecido desde el otro lado del Atlántico.”
Mecenas

María del Carmen Colodrero
Joaquín Méndez Colodrero
Mecenas

Carlos Fernández
Mecenas

Carlos Garcia Gutiérrez
Mecenas

Marian y Miguel Ángel
“Muchas gracias por tu trabajo. La Ciencia al alcance de todos.”
Mecenas

Carlos Serrano
“Un placer cooperar un poco con su proyecto. Buen trabajo!”
Mecenas

Francisco Javier Aguilar
Mecenas

Francisco J. García Pato
Mecenas

Jesús López Tapia
“Querido Ángel. Me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas

Javier Olveira
“Gracias por seguir realizando divulgación de calidad.”
Mecenas

Sara Carrero
“Aprovecho para daros la enhorabuena por el espacio “Hablando con Científicos”, que me gusta especialmente.”
Mecenas

Mariano Redondo de la Villa
Mecenas

Javi Zumaia
“En plena era de la desinformación, vuestra labor dedicada a la divulgación científica no hace sino aportar un balón de oxígeno a todos los amantes de la ciencia.”
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page