Cienciaes.com

Hablando con científicos podcast - cienciaes.com suscripción

Hablando con Científicos

El conocimiento científico crece gracias a la labor de miles de personas que se esfuerzan, hasta el agotamiento, por encontrar respuestas a los enigmas que plantea la Naturaleza. En cada programa un científico conversa con Ángel Rodríguez Lozano y abre para nosotros las puertas de un campo del conocimiento.

Transistores moleculares. Hablamos con Alvar Rodríguez Garrigues.

Transistores moleculares - Hablando con Científicos podcast - CienciaEs.com

Los aparatos electrónicos se han convertido en amigos inseparables en nuestras vidas, vayamos donde vayamos, nos acompañan teléfonos móviles, ordenadores, tablets, etc. En la base de todos esos aparatos yacen circuitos electrónicos cada vez más pequeños y sofisticados, circuitos equipados con dispositivos que están alcanzando dimensiones que se acercan, cada día más, a las de moléculas y átomos. Un elemento esencial en cualquier circuito electrónico es el transistor. Básicamente se trata de un dispositivo capaz de controlar a voluntad la corriente que circula por él. Esa habilidad se puede traducir en un lenguaje binario, “1” si pasa la corriente o “0” si no lo hace. Asociado a otros componentes el transistor puede realizar cualquier función, interruptor, rectificador, amplificador de señal, almacenamiento de datos, comunicación, etc.

El primer transistor vio la luz en 1947 y, desde entonces, ha revolucionado la vida de los seres humanos. Aquel primer transistor era un elemento poco atractivo, tenía varios centímetros de tamaño y parecía más bien una escultura surrealista en la que se juntaban desordenadamente cables, alambres, una pieza triangular de plástico con conectores de oro y un cristal de germanio situado sobre una base de metal. Pero el artilugio funcionaba y, además, era mucho más pequeño que las válvulas de vacío que, hasta entonces, realizaban el mismo cometido. Su éxito fue tal que, tan sólo nueve años después, en 1956, el comité Nobel concedió el galardón de Física a tres William Bradford Shockley, John Bardeen y Walter Houser Brattain “Por sus investigaciones sobre semiconductores y el descubrimiento del efecto transistor”.

El transistor tuvo un ascenso meteórico. A medida que pasaba el tiempo, los técnicos lograban diseñar y construir dispositivos más y más pequeños, una progresión que el cofundador de INTEL, Gordon E. Moore, definió en forma de ley. La ley de Moore venía a predecir que el número de transistores integrados en un microprocesador, por unidad de superficie, se duplicaría cada dos años. Hasta ahora, esa predicción se ha cumplido y en la actualidad se logran integrar 2.000 millones de transistores en un centímetro cuadrado.

Sin embargo, la ley de Moore no se puede cumplir indefinidamente, con el tiempo, las dimensiones de los transistores se van haciendo tan pequeñas que llegará un momento en el que tendrán que competir en tamaño con las moléculas y los átomos. Entonces, como el propio Moore dijo más tarde, tendrán que salir a la luz nuevas tecnologías que permitan superar esa barrera. Una de esas tecnologías es la que hoy nos explica nuestro invitado, Alvar Rodríguez Garrigues, físico que realizó su tesis doctoral sobre transistores moleculares en el Departamento de Física de la Universidad Central de Florida, en Orlando y actualmente trabaja Centro de desarrollo de Tecnología de Porland de la empresa INTEL.

Alvar Rodríguez cuenta durante la entrevista cómo, a lo largo de seis años, estuvo investigando en un transistor cuyo núcleo ya no es un cristal dopado de silicio o germanio, como los actuales, sino una única molécula, eso sí, no es una molécula cualquiera, ha sido especialmente diseñada para imitar el comportamiento de un transistor convencional. La molécula utilizada durante la investigación doctoral se llama “ferroceno” y está formada por un átomo de hierro encerrado en entre cadenas de átomos de carbono. Si por un transistor convencional puede circular una corriente constituida por un inmenso número de electrones, en el transistor molecular, construido con la molécula de ferroceno, los electrones pasan de uno en uno, gobernados por las leyes de le física cuántica.

La construcción de un transistor molecular es un reto impresionante porque, aún con los más sofisticados microscopios, es imposible de observar directamente. Alvar nos cuenta los detalles de la construcción y manejo del transistor molecular; los nanocables de oro que se utilizan como conectores; las dificultades que tiene el abrir un espacio entre los conectores y colocar en el hueco la molécula de ferroceno; y, una vez conseguido, la complejidad que tiene medir las características eléctricas del dispositivo, porque esas medidas deben hacerse en condiciones de temperatura cercanas al cero absoluto ( -273ºC) . Todo ello para investigar transistores que, posiblemente, formarán parte de los dispositivos electrónicos que se utilizarán en el futuro.

Alvar Rodríguez no solamente habla de transistores moleculares durante la entrevista, también nos ofrece el relato humano del estudiante que sale de España, donde estudiaba ciencias físicas en la Universidad Complutense de Madrid, y se va a con una beca a Estados Unidos. Una vez allí, inicia un camino que le permite investigar, durante 6 años, sobre transistores moleculares en University of Central Florida, en Orlando, y finalmente, tras la lectura de su tesis doctoral, es reclutado por la empresa INTEL.

Os invito a escuchar a Alvar Rodríguez Garrigues, doctor en Física por la University of Central Florida, actualmente en el Centro de desarrollo de Tecnología de Porland, INTEL.

Referencias:

AR Garrigues et al., A single-level tunnel model to account for electrical transport through single molecule-and self-assembled monolayer-based junctions. Scientific reports, Nature.

AR Garrigues et al., Electrostatic control over temperature-dependent tunnelling across a single-molecule junction. Nature Communications volume 7, Article number: 11595 (2016)


Botón de donación
Apoya a CienciaEs haciéndote MECENAS con una donación periódica o puntual.
Colabore con CienciaEs.com - Ciencia para Escuchar
35,6 millones de audios servidos desde 2009

Agradecemos la donación de:

Javi Zumaia
“En plena era de la desinformación, vuestra labor dedicada a la divulgación científica no hace sino aportar un balón de oxígeno a todos los amantes de la ciencia.”
Mecenas

Alberto Hernando
“A seguir bien:)”
Mecenas

Donación anónima
“Muchas Gracias”
Mecenas

Juan Luján
“Gracias por el placer del saber”
Mecenas

Javier Calpe
Mecenas

Fernando Bayon
Mecenas

Jesús López Tapia
“Querido Ángel. Me siento muy honrado de pertenecer a esta comunidad. Gracias por vuestro trabajo.”
Mecenas

Luis M Barreiro
Mecenas

Eduard Capell
Mecenas

Fernando Antonio Navarrete
Mecenas

Anónimo desde México
“Deseando que el 2021 nos encuentre fuertes para – apoyados en la ciencia – tratar de mejorar al mundo y a nuestra especie, les envío un abrazo agradecido por su esfuerzo y dedicación. Muchas gracias, Ángel y todo el equipo.”
Mecenas

Anónimo de Granada
Mecenas

Philip Schlup
Mecenas

Josep Pau Canal
Nuevo mecenas de Paypal

Angels Santesmasses
Mecenas

Peter O’Donovan
Mecenas

Oscar Greggio Ochoa
Nuevo mecenas de Patreon

Jordi Pardo Mani
“Mi contribución es modesta pero mi ánimo hacia vosotros enorme. “
Mecenas

Daniel Alfredo Tenorio
Mecenas

Santiago Machín Hamalainen
Mecenas

Juan Agustín Esteban Jiménez
Mecenas

Javier
Nuevo mecenas de Patreon

Oscar Eduardo Trujillo
Mecenas

Belén Rial Franco
Mecenas

Eduardo Hector Fernández
Mecenas

Norman Vasquez
Mecenas

José Luis Sanchez Lozano
Mecenas

David Valentín
Mecenas

Ignacio Arregui
Mecenas

Jacob Hughey Mecenas

Carlos Serrano Mecenas

Willem Reinders Mecenas

Juan Luis Jimeno Mecenas

David Bueno González
Mecenas

*Daniel César Román”
Mecenas

———- O ———-
App CienciaEs Android
App CienciaEs
App de cienciaes en apple store YouTube CienciaEs
———- O ———-



feed completo
Suscribase a nuestros programas






Locations of visitors to this page